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Abstract. The generic properties of solutions of the second order ordi-
nary differential equations were studied by L. Brüll and J. Mawhin in [2],
J. Mawhin in [5] and by V. Šeda in [9]. Such questions were solved for non-
linear diffusional type problems with the Dirichlet, Neumann and Newton
type conditions by V. Ďurikovič, Ma. Ďurikovičová in [4].
In the present paper we study the set structure of classic solutions, bifur-
cation points and the surjectivity of an associated operator to a general
second order nonlinear evolution problem by the Fredholm operator theory.
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1 The formulation of problem and basic notations

Throughout this paper we assume that the set Ω ⊂ Rn for n ∈ N is a bounded
domain with the sufficiently smooth boundary ∂Ω. The real number T is positive
and Q := (0, T ]×Ω,Γ := (0, T ]× ∂Ω.

We use the notation Dt for ∂/∂t and Di for ∂/∂xi and Dij for ∂2/∂xi∂xj
where i, j = 1, . . . , n and D0u for u. The symbol clM means the closure of a set
M in Rn.

We consider the nonlinear differential equation possibly a non-parabolic type

Dtu−A(t, x,Dx)u+ f(t, x, u,D1u, . . . , Dnu) = g(t, x) (1.1)

This is an overview article.
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for (t, x) ∈ Q, where the coefficients aij , ai, a0 for i, j = 1, . . . , n of the second
order linear operator

A(t, x,Dx)u =
n∑

i,j=1

aij(t, x)Diju+
n∑
i=1

ai(t, x)Diu+ a0(t, x)u

are continuous functions from the space C(clQ,R). The function f is from the
space C(clQ×Rn+1, R) and g ∈ C(clQ,R).

Together with the equation (1.1) we consider the following general homoge-
neous boundary condition

B3(t, x,Dx)u|Γ :=
n∑
i=1

bi(t, x)Diu+ b0(t, x)u|Γ = 0, (1.2)

where the coefficients bi for i = 1, . . . , n and b0 are continuos functions from
C(clΓ,R).

Furthermore we require for the solution of (1.1) to satisfy the homogeneous
initial condition

u|t=0 = 0 on clΩ. (1.3)

In the following definitions we shall use the notations

〈u〉st,µ,Q := sup
(t,x),(s,x)∈clQ

t�=s

|u(t, x)− u(s, x)|
|t− s|µ , (1.4)

〈u〉yx,ν,Q := sup
(t,x),(t,y)∈clQ

x �=y

|u(t, x)− u(t, y)|
|x− y|ν , (1.5)

〈f〉s,y,vt,x,u := |f(t, x, u0, u1, . . . , un)− f(s, y, v0, v1, . . . , vn)| ,

〈f〉s,y,v(s,y)t,x,u(t,x) := |f [t, x, u(t, x), D1u(t, x), . . . , Dnu(t, x)]−
−f [s, y, v(s, y), D1v(s, y), . . . , Dnv(s, y)]| ,

where x = (x1, . . . , xn) and y = (y1, . . . , yn) are from Rn, µ, ν ∈ R and |x− y| =
=
[ n∑
i=1

(xi − yi)2
] 1

2 .

The concept of a domain with a locally smooth boundary is given in the fol-
lowing definition.

Definition 1.1. Let r ∈ (1,∞) and Ω ⊂ Rn be a bounded domain. We say that
the boundary ∂Ω belongs to the class Cr, r ≥ 1 if:

(i) There exists a tangential space to ∂Ω at any point from the boundary ∂Ω.

(ii) Assume y ∈ ∂Ω and let (y; z1, . . . , zn) be a local orthonormal coordinate sys-
tem with the center y and with the axis zn oriented like the inner normal
to ∂Ω at the point y. Then there exists a number b > 0 such that for every
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y ∈ ∂Ω there exists a neighbourhood O(y) ⊂ Rn of the point y and a function
F ∈ Cr(clB,R) such that the part of boundary

∂Ω ∩O(y) = {(z′, F (z′)) ∈ Rn, z′ = (z1, . . . , zn−1) ∈ B},

where B = {z′ ∈ Rn−1; |z′| < b}.

Here Cr(clB,R) is a vector space of the functions u ∈ Cl(clB,R) for l = [r]
with the finite norm

||u||l+α =
∑

0≤k≤l
sup

x∈clB

∣∣Dk
xu(x)

∣∣+∑
k=l

〈
Dk

xu
〉y
x,α,B

,

whereby α = r − [r] ∈ [0, 1) and r = l + α.
Further, we shall need the following Hölder spaces — see [3, p. 147].

Definition 1.2. Let α ∈ (0, 1).

1. By the symbol C(1+α)/2,1+α
t,x (clQ,R) we denote the vector space of continuous

functions u : clQ → R which have continuous derivatives Diu for i = 1, . . . , n
on clQ and the norm

||u||(1+α)/2,1+α,Q :=
n∑
i=0

sup
(t,x)∈clQ

|Diu(t, x)|+ < u >s
t,(1+α)/2,Q +

+
n∑
i=1

〈Diu〉st,α/2,Q +
n∑
i=1

〈Diu〉yx,α/2,Q (1.6)

is finite.

2. The symbol C(2+α)/2,2+α
(t,x) (clQ,R) means the vector space of continuous func-

tions u : cl Q→ R for which there exist continuous derivatives Dtu,Diu,Diju
on clQ, i, j = 1, . . . n and the norm

||u||(2+α)/2,2+α,Q :=
n∑
i=0

sup
(t,x)∈clQ

|Diu(t, x)|+ sup
(t,x)∈clQ

|Dtu(t, x)|+

+
n∑

i,j=1

sup
(t,x)∈clQ

|Diju(t, x)|+
n∑
i=1

< Diu >
s
t,(1+α)/2,Q + < Dtu >

s
t,α/2,Q +

+
n∑

i,j=1

< Diju >
s
t,α/2,Q + < Dtu >

y
x,α,Q +

n∑
i,j=1

< Diju >
y
x,α,Q (1.7)

is finite.

3. The symbol C(3+α)/2,3+α
t,x (clQ,R) means the vector space of continuous func-

tions u : clQ→ R for which the derivativesDt, Diu,DtDiu,Diju,Dijku, i, j, k =
1, . . . , n are continuous on clQ and the norm
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||u||(3+α)/2,3+α,Q :=
n∑
i=0

sup
(t,x)∈clQ

|Diu(t, x)|+
n∑

i,j=1

sup
(t,x)∈clQ

|Diju(t, x)|+

+
n∑
i=0

sup
(t,x)∈clQ

|DtDiu(t, x)|+
n∑

i,j,k=1

sup
(t,x)∈clQ

|Dijku(t, x)|+

+ 〈Dtu〉st,(1+α)/2,Q +
n∑

i,j=1

〈Diju〉st,(1+α)/2,Q +

+
n∑
i=1

〈DtDiu〉st,α/2,Q +
n∑

i,j,k=1

〈Dijku〉st,α/2,Q +

+
n∑
i=1

〈DtDiu〉yx,α,Q +
n∑

i,j,k=1

〈Dijku〉yx,α,Q (1.8)

is finite.

The above defined norm spaces are Banach ones and we call them Hölder
spaces.

Definition 1.3. (The smoothness condition (S1+α
3 ).) Let α ∈ (0, 1). We say that

the differential operator A(t, x,Dx) from (1.1) and B3(t, x,Dx) from (1.2), respec-
tively satisfies the smoothness condition (S1+α

3 ) if

(i) the coefficients aij , ai, a0 from (1.1) for i, j = 1, . . . , n belong to the space

C
(1+α)/2,1+α
t,x (clQ,R) and ∂Ω ∈ C3+α and

(ii) the coefficients bi from (1.2) for i = 1, . . . , n belong to the space

C
(2+α)/2,2+α
t,x (clΓ,R).

Definition 1.4. (The complementary condition (C).) If at least one of the coef-
ficients bi for i = 1, . . . , n of the differential operator B3(t, x,Dx) in (1.2) is not
zero we say that B3(t, x,Dx) satisfies the complementary condition (C).

In the following part we shall reformulate the problem (1.1), (1.2), (1.3) to the
operator equation

F3u = A3u+N3u = g

using several assumptions from

Definition 1.5.

1. Fredholm conditions
(A3.1) Consider the operator A3 : X3 → Y3, where

A3u = Dtu−A(t, x,Dx)u, u ∈ X3
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and the operators A(t, x,Dx) and B3(t, x,Dx) satisfy the smoothness condition
(S1+α

3 ) for α ∈ (0, 1) and the complementary condition (C). Here we consider
the vector spaces

D(A3) := {u ∈ C(3+α)/2,3+α
t,x (clQ,R);

B3(t, x,Dx)u|Γ = 0, u|t=0(x) = 0 for x ∈ clΩ}
and

H(A3) := {v ∈ C(1+α)/2,1+α
t,x (clQ,R); B3(t, x,Dx)v(t, x)|t=0,x∈∂Ω = 0}

and Banach subspaces of the given Hölder spaces

X3 =
(
D(A3), ||.||(3+α)/2,3+α,Q

)
and

Y3 =
(
H(A3), ||.||(1+α)/2,1+α,Q

)
.

(A3.2) There is a second order linear homeomorphism C3 : X3 → Y3 with

C3u = Dtu− C(t, x,Dx)u, u ∈ X3 ,

where

C(t, x,Dx)u =
n∑

i,j=1

cij(t, x)Diju+
n∑
i=1

ci(t, x)Diu+ c0(t, x)u

satisfying the smoothness condition (S1+α
3 ). The operator C3 is not necessarily

parabolic one.

2. Local Hölder and compatibility conditions.
Let f := f(t, x, u0, u1, . . . , un) : clQ × Rn+1 → R, α ∈ (0, 1) and let p, q, pr
for r = 0, 1, . . . , n be nonnegative constants. Here, D represents any compact
subset of (clQ)×Rn+1. For f we need the following assumptions:
(N3.1) Let f ∈ C1(clQ×Rn+1, R) and let the first derivatives ∂f/∂xi, ∂f/∂uj
be locally Hölder continuous on clQ×Rn+1 such that

〈∂f/∂xi〉s,y,vt,x,u

〈∂f/∂uj〉s,y,vt,x,u

}
≤ p|t− s|α/2 + q|x− y|α +

n∑
r=0

pr|ur − vr|

for i = 1, . . . , n and j = 0, 1, . . . , n and any D.
(N3.2) Let f ∈ C3(clQ× Rn+1, R) and let the local growth conditions for the
third derivatives of f hold on any D:〈

∂3f/∂τ∂xi∂uj
〉t,x,v
t,x,u〈

∂3f/∂τ∂uj∂uk
〉t,x,v
t,x,u〈

∂3f/∂xi∂xl∂uj
〉t,x,v
t,x,u〈

∂3f/∂xi∂uj∂uk
〉t,x,v
t,x,u〈

∂3f/∂uj∂uk∂ur
〉t,x,v
t,x,u


≤

n∑
s=0

ps|us − vs|βs
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where βs > 0 for s = 0, 1, . . . , n and i, l = 1, . . . , n; j, k, r = 0, 1, . . . , n.
(N3.3) The equality of compatibility

n∑
i=1

bi(t, x)Dif(t, x, 0, . . . , 0) + b0(t, x)f(t, x, 0, . . . , 0)|t=0, x∈S = 0

holds.

3. Almost coercive condition.
Let for any bounded set M3 ⊂ Y3 there exist a number K > 0 such that for
all solutions u ∈ X3 of the problem (1.1), (1.2), (1.3) with the right hand side
g ∈M3, the following alternative holds:
(F3.1) Either
(α3) ‖u‖(1+α)/2,1+α,Q ≤ K, f := f(t, x, u0) : clQ×R→ R and the coefficients
of the operators A3 and C3 (see (1.1) and (A3.2) satisfy the equations

aij = cij , ai = ci for i, j = 1, . . . , n, a0 �= c0 on clQ

or
(β3) ‖u‖(2+α)/2,2+α,Q ≤ K, f := f(t, x, u0, u1, . . . , un) : clQ×Rn+1 → R and
the coefficients of the operators A3 and C3 satisfy the relations

aij = cij for i, j = 1, . . . , n and ai �= ci for at least one i = 1, . . . , n

on clQ.

Remark 1.6.

1. Especially, the condition (A3.2) is satisfied for the diffusion operator

C3u = Dtu− � u, u ∈ X3

or for any uniformly parabolic operator C3 with sufficiently smooth coefficients.
However the operator C3 is not necessarily uniform parabolic.

2. The local Hölder conditions in (N3.1) and (N3.2) admit sufficiently strong
growths of f in the last variables u0, u1, . . . , un. For example, they include
exponential and power type growths.

Definition 1.7.

1. A couple (u, g) ∈ X3 × Y3 will be called the bifurcation point of the mixed
problem (1.1), (1.2), (1.3) if u is a solution of that mixed problem and there
exists a sequence {gk} ⊂ Y3 such that gk → g in Y3 as k →∞ and the problem
(1.1), (1.2), (1.3) for g = gk has at least two different solutions uk, vk for each
k ∈ N and uk → u, vk → u in X3 as k →∞.

2. The set of all solutions u ∈ X3 of (1.1), (1.2), (1.3) (or the set of all functions
g ∈ Y3) such that (u, g) is a bifurcation point of the problem (1.1), (1.2), (1.3)
will be called the domain of bifurcation (the bifurcation range) of that problem.
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Under the previous hypotheses we have proved the fundamental lemas:

Lemma 1.8. The following implications are true:

(1) (A3.1), (A3.2) imply that the operator A3 : X3 → Y3 is a linear bounded Fred-
holm operator of the zero index.

(2) (N3.1), (N3.2) imply that the Nemitskij operator N3 : X3 → Y3 defined by

(N3u)(t, x) = f [t, x, u(t, x), D1u(t, x), . . . , Dnu(t, x)]

for u ∈ X3 and (t, x) ∈ clQ is completely continuous.

(3) (A3.1), (A3.2), (N3.1), (N3.3), (F3.1) imply that the operator F3 = A3 +
N3 : X3 → Y3 is coercive.

(4) (N3.2), (N3.3) imply that N3 ∈ C1(X3, Y3) and is completely continuous.

Lemma 1.9. Let A3 : X3 → Y3 be the linear operator satysfying (A3.1), (A3.2)
and let N3 : X3 → Y3 be the Nemitskij operator satysfying (N3.1), (N3.3) and
F3 = A3 +N3 : X3 → Y3. Then:

(i) The function u ∈ X3 is a solution of the initial-boundary value problem (1.1),
(1.2), (1.3) for g ∈ Y3 if and only if F3u = g.

(ii) The couple (u, g) ∈ X3 × Y3 is the bifurcation point of the initial-boundary
value problem (1.1), (1.2), (1.3) if and only if F3(u) = g and u ∈ Σ, where Σ
means the set of all points of X3 at which F3 is not locally invertible.

2 Generic properties for continuous operators

Aplying

Theorem (Ambrosetti). Let F ∈ C(X,Y ) be a proper mapping. Then the car-
dinal number card F−1({q}) of the set F−1({q}) is constant and finite (it may be
zero) for each q taken from the same (connected) component of the set Y −F (Σ).
Here Σ means the set of all points u ∈ X for which F is not locally invertible.

and

Theorem (S. Smale and F. Quinn). If F : X → Y is a Fredholm mapping of
class Cq, q > max(indF, 0) and either

X has a countable basis (Smale)
or

F is σ-proper (Quinn),
then the set RF of all regular values of F is residual in Y . If F is proper, then
RF is open and dense in Y .

we can prove the main results for the nonlinear problem (1.1), (1.2), (1.3). Here
X and Y are Banach spaces either both real or complex.



166 V. Ďurikovič and M. Ďurikovičová

Theorem 2.1. Under the assumptions (A3.1), (A3.2) and (N3.1), (N3.3) the fol-
lowing statements hold for the problem (1.1), (1.2), (1.3):

(a) The operator F3 = A3 +N3 : X3 → Y3 is continuous.

(b) For any compact set of the right hand sides g ∈ Y3 from (1.1), the correspond-
ing set of all solutions is a countable union of compact sets.

(c) For u0 ∈ X3 there exists a neighbourhood U(u0) of u0 and U(F3(u0)) of
F3(u0) ∈ Y3 such that for each g ∈ U(F3(u0)) there is a unique solution
of (1.1), (1.2), (1.3) if and only if the operator F3 is locally injective at u0.

Moreover, if (F3.1) is assumed, then:

(d) For each compact set of Y3 the corresponding set of all solutions is compact
(possibly empty).

Theorem 2.2. If the hypotheses (A3.1), (A3.2), (N3.1), (N3.3) and (F3.1) are
satisfied, then for the initial-boundary value problem (1.1), (1.2), (1.3) the follow-
ing statements hold:

(e) For each g ∈ Y3 the set S3g of all solutions is compact (possibly empty).

(f) The set R(F3) = {g ∈ Y3; there exists at least one solution of the given
problem } is closed and connected in Y3.

(g) The domain of bifurcation D3b is closed in X3 and the bifurcation range R3b

is closed in Y3. F3(X3 −D3b) is open in Y3.

(h) If Y3−R3b �= ∅, then each component of Y3−R3b is a nonempty open set (i.e.
a domain).
The number n3g of solutions is finite, constant (it may be zero) on each com-
ponent of the set Y3 − R3b, i.e. for every g belonging to the same component
of Y3 −R3b.

(i) If R3b = ∅, then the given problem has a unique solution u ∈ X3 for each
g ∈ Y3 and this solution continuously depends on g as a mapping from Y3 onto
X3.

(j) If R3b �= ∅, then the boundary of the F3 - image of the set of all points from
X3 in which the operator F3 is locally invertible, is a subset of the F3 - image
of all points from X3 in which F3 is not locally invertible, i.e.

∂F3(X3 −D3b) ⊂ F3(D3b) = R3b

3 Generic properties for C1-differentiable operator

In case the Nemitskij operator N3 ∈ C1(X,Y ), we get stronger results. Using the
theorem on a local C1-diffeomorphism

Theorem (E. Zeidler). Let F : (U(u0) ⊂ X)→ Y be a C1-mapping. Then F is
a local C1-diffeomorphism at u0 if and only if u0 is a regular point of F .

and
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Theorem (R. S. Sadyrchanov). Let dimY ≥ 3 and let F : X → Y be a Fred-
holm mapping of the zero index. If u0 is an isolated singular point of F , then the
mapping F is localy invertibly at u0.

we obtain main results for C1-differentiable operators.

Theorem 3.1. Assume that the hypotheses (A3.1), (A3.2), (N3.2), (N3.3) hold.
Then the open set Y3 − R3b is dense in Y3 and thus the range of bifurcation

R3b of initial-boundary value problem (1.1), (1.2), (1.3) is nowhere dense in Y3.

Also we shall investigate the linear problem in h ∈ X3 for some u ∈ X3:

A3h(t, x)+
n∑

j=0

∂f

∂uj
[t, x, u(t, x), D1u(t, x), . . . , Dnu(t, x)]Djh(t, x) = g(t, x) (3.1)

with the conditions (1.2), (1.3).

Theorem 3.2. Assume that the hypotheses (A3.1), (A3.2), (N3.2), (N3.3) and
(F3.1) hold. Then

(a) The number of solutions of (1.1), (1.2), (1.3) is constant and finite (it may
be zero) on each connected component of the open set Y3−F (S3), i.e. for any
g belonging to the same connected component of Y3 − F3(S3). Here S3 means
the set of all critical points of problem (1.1), (1.2), (1.3).

(b) Let u0 ∈ X3 be a regular solution of (1.1), (1.2), (1.3) with the right hand side
g0 ∈ Y3. Then there exists a neighbourhood U(g0) ⊂ Y3 of g0 such that for any
g ∈ U(g0) the initial-boundary value problem (1.1), (1.2), (1.3) has one and
only one solution u ∈ X3. This solution continuously depends on g.
The associated linear problem (3.1), (1.2), (1.3) for u = u0 has a unique
solution h ∈ X3 for any g from a neighbourhood U(g0) of g0 = F3(u0). This
solution continuously depends on g.

(c) Denote by G3 the set of all right hand sides g ∈ Y3 of equation (1.1) for which
the corresponding solutions u ∈ X3 of the problem (1.1), (1.2), (1.3) are its
critical solutions. Then G3 is closed and nowhere dense in Y3.

(d) If the singular points set of the initial-boundary value problem (1.1), (1.2),
(1.3) is empty, then this problem has unique solution u ∈ X3 for each g ∈ Y3.
It continuously depends of the right hand side g.

Corollary 3.3. Let the hypotheses of Theorem 3.2 hold and

(i) the linear homogeneous problem (3.1), (1.2), (1.3) (for g = 0) has only zero
solution h = 0 ∈ X3 for any u ∈ X3.

Then the initial-boundary value nonlinear problem (1.1), (1.2), (1.3) has a unique
solution u ∈ X3 for any g ∈ Y3. This solution u continuously depends on g.
Moreover linear problem (3.1), (1.2), (1.3) has a unique solution h ∈ X3 for any
u ∈ X3 and for each right hand side g ∈ Y3 of (3.1) and this solution continuously
depends on g.



168 V. Ďurikovič and M. Ďurikovičová

Theorem 3.4. Suppose that the hypotheses (A3.1), (A3.2), (N3.2), (N3.3) and
(F3.1) hold together with the condition

(i) Each point u ∈ X3 is either a regular point or an isolated critical point of
problem (1.1), (1.2), (1.3).

Then to each g ∈ Y3 there exists one and only one solution u ∈ X3 of the problem
(1.1), (1.2), (1.3) and it continuously depends on g.
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