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Abstract. In this paper we extend an abstract approach to inertial mani-
folds for nonautonomous dynamical systems. Our result on the existence of
inertial manifolds requires only two geometrical assumptions, called cone
invariance and squeezing property, and some additional technical assump-
tions like boundedness or smoothing properties.

In the second part of the paper we consider special nonautonomous dy-
namical systems, namely two-parameter semi-flows. As an application of
our abstract approach and for reason of comparison with known results we
verify the assumptions for semilinear nonautonomous evolution equations
whose linear part satisfies an exponential dichotomy condition and whose
nonlinear part is globally bounded and globally Lipschitz. Moreover, we
apply our result on parabolic evolution equation with constant selfadjoint
part. So we show that our abstract approach allows to obtain the sharp
conditions in the autonomous case but they are applicable for the nonau-
tonomous case, too.
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1 Introduction

Let us consider a dissipative nonlinear evolution equation of the form

u̇+Au = f(u)

in a Banach space X , where A is a linear sectorial operator with compact resolvent
and f is a nonlinear function. Such an evolution equation may be an ordinary
differential equation (X = Rn) or the abstract formulation of a semilinear parabolic
differential equation with X as a suitable function space over the spatial domain. In
the last case, A corresponds to a linear differential operator and f is a nonlinearity
which may involve derivatives of lower order than A.

Inertial manifolds are positively invariant, exponentially attracting, finite di-
mensional Lipschitz manifolds. The notion goes back to D. Henry and X. Mora
[Hen81], [Mor83] and were first introduced and studied by P. Constantin, C. Foias,
B. Nicoalenko, G.R. Sell and R. Temam [FST85], [FNST85], [CFNT86] for selfad-
joint A. For the construction of inertial manifolds with A being non-selfadjoint see
for example [SY92] and [Tem97]. Inertial manifolds are generalizations of center-
unstable manifolds and they are more convenient objects which capture the long-
time behavior of dynamical systems. If such a manifold exists, then it contains
the global attractor A. Usually an inertial manifoldM is seeked as the graph of a
sufficiently smooth function m on PX , i.e.

M = graph(m) := {x+m(x) : x ∈ PX} ,

where P is a finite dimensional projector. The finite dimensionality and the expo-
nential attracting property permit the reduction of the dynamics of the infinite or
high dimensional equation to the dynamics of a finite or low dimensional ordinary
differential equation

ẋ+Ax = Pf(x+m(x)) in PX

called inertial form system. A stronger reduction property is the asymptotical
completeness property [Rob96]: Each trajectory of the evolution equation tends
exponentially to a trajectory in the inertial manifold.

There are a few ways of constructing an inertial manifold. Most of them are gen-
eralization of methods developed for the construction of unstable, center-unstable
or center manifolds for ordinary differential equations.

The above mentioned notion of inertial manifolds is translated and extended to
more general classes of differential equations like nonautonomous differential equa-
tions, [GV97], [WF97], [LL99], retarded parabolic differential equations, [TY94],
[BdMCR98], or differential equations with random or stochastic perturbations,
[Chu95], [BF95], [CL99], [CS01], [DLS01].

The construction of inertial manifolds often is redone for different classes of
equations. Our aim is to separate the general structure of the construction from
the technical estimates which vary from example to example. So in [KS01] we
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developed an existence result of inertial manifolds on the abstract level of nonau-
tonomous dynamical systems and we applied it to explicit nonautonomous evolu-
tion equations under various assumptions. The main assumptions on the nonau-
tonomous dynamical system are generalizations of the cone invariance property
and the squeezing property as geometrical assumptions on the nonautonomous
dynamical system. For the proof of the existence result we need some additional
technical assumptions on the nonautonomous dynamical system which we called
boundedness property and coercivity property. For nonautonomous semilinear evo-
lution equations whose linear part satisfies an exponential dichotomy condition and
these properties follows from the global boundedness of the nonlinear part and its
global Lipschitz property.

Whereas the global Lipschitz property is a standard assumption and which is
also used to verify the cone invariance and squeezing property, in some approaches
to inertial manifolds the boundedness assumption is removed or at least replaced
by weaker assumptions, for example by the requirement that there is a stationary
solution.

For reason of completeness we repeat the essential results of [KS01]. In addition
to [KS01], we will introduce another group of technical assumptions which can be
verified in the case of evolution equations without boundedness assumption on the
nonlinear part but by assuming of an special stationarity property and a quantified
coercivity property.

Moreover we give a slight extension to the case the nonautonomous dynamical
system acts on a Banach space X whereas the cone invariance and squeezing prop-
erty are required only with respect to the weaker norm of a larger space Y. This
includes the situation of parabolic evolution equations where the smoothing action
of these problems allows to use weaker assumptions on the dynamical system.

2 Nonautonomous Dynamical Systems

2.1 Preliminaries

Let (X , ‖ · ‖X ) be a Banach space.

Definition 1 (Nonautonomous Dynamical System (NDS)). A nonautono-
mous dynamical system (NDS) on X is a cocycle ϕ over a driving system θ on a
set B, i.e.

(i) θ : R × B → B is a dynamical system, i.e. the family θ(t, ·) = θ(t) : B → B
of self-mappings of B satisfies the group property

θ(0) = idB , θ(t+ s) = θ(t) ◦ θ(s)

for all t, s ∈ R.
(ii) ϕ : R≥0×B×X → X is a cocycle, i.e. the family ϕ(t, b, ·) = ϕ(t, b) : X → X

of self-mappings of X satisfies the cocycle property

ϕ(0, b) = idX , ϕ(t+ s, b) = ϕ(t, θ(s)b) ◦ ϕ(s, b)

for all t, s ≥ 0 and b ∈ B. Moreover (t, x) -→ ϕ(t, b, x) is continuous.
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Remark 2. (i) The set B is called base and in applications it has additional struc-
ture, e.g. it is a probability space, a topological space or a compact group and the
driving system has additional regularity, e.g. it is ergodic or continuous.

(ii) The pair of mappings

(θ, ϕ) : R≥0 × B × X → B ×X , (t, b, x) -→ (θ(t, b), ϕ(t, b, x))

is a special semi-dynamical system a so-called skew product flow (usually one
requires additionally that (θ, ϕ) is continuous). If B = {b} consists of one point
then the cocycle ϕ is a semi-dynamical system.

(iii) We use the abbreviations θtb or θ(t)b for θ(t, b) and ϕ(t, b)x for ϕ(t, b, x).
We also say that ϕ is an NDS to abbreviate the situation of Definition 1.

Definition 3 (Nonautonomous Set). A familyM = (M(b))b∈B of non-empty
setsM(b) ⊂ X is called a nonautonomous set andM(b) is called the b-fiber ofM
or the fiber of M over b. We say that M is closed, open, bounded, or compact, if
every fiber has the corresponding property. For notational convenience we use the
identificationMC {(b, x) : b ∈ B, x ∈M(b)} ⊂ B × X .

Definition 4 (Invariance of Nonautonomous Set). A nonautonomous set
M is called forward invariant under the NDS ϕ, if ϕ(t, b)M(b) ⊂ M(θtb) for
t ≥ 0 and b ∈ B. It is called invariant, if ϕ(t, b)M(b) = M(θtb) for t ≥ 0 and
b ∈ B.

Definition 5 (Inertial Manifold). Let ϕ be an NDS. Then a nonautonomous
set M is called (nonautonomous) inertial manifold if

(i) every fiber M(b) is a finite-dimensional Lipschitz manifold in X of dimen-
sion N for an N ∈ N;

(ii) M is invariant ;
(iii) M is exponentially attracting, i.e. there exists a positive constant η such

that for every b ∈ B and x ∈M(b) there exists an x′ ∈M(b) with

‖ϕ(t, b)x− ϕ(t, b)x′‖X ≤ Ke−ηt for t ≥ 0 and b ∈ B

and a constant K = K(b, x, x′) > 0.
The property (iii) is also called exponential tracking property or asymptotic

completeness property and x′ or ϕ(·, b)x′ is said to be the asymptotic phase of x
or ϕ(·, b)x, respectively.

Recall that if D and A are nonempty closed sets in X , the Hausdorff semi-metric
d(D|A) is defined by

d(D|A) := sup
x∈D

d(x,A) , d(x,A) := inf
y∈A

d(x, y) = inf
y∈A

‖x− y‖ .

The appropriate generalization of convergence to a nonautonomous set A is
the pullback convergence defined by

d(ϕ(t, θ−tb)x,A(b))→ 0 for t→∞ ,
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which was introduced in the mid 1990s in the context of random dynamical
systems (see Crauel and Flandoli [CF94], Flandoli and Schmalfuss [FS96], and
Schmalfuss [Sch92]) and has been used e.g. in numerical dynamics. Note that a
similar idea had already been used in the 1960s by Mark Krasnoselski [Kra68] to
establish the existence of solutions that exist and remain bounded on the entire
time set.

Now we define a handy notion (see Ludwig Arnold [Arn98, Definition 4.1.1(ii)])
excluding exponential growth of a function.

Definition 6 (Temperedness). A function R : B → ]0,∞[ is called tempered
from above if for every b ∈ B

lim sup
t→±∞

1
|t| logR(θtb) = 0 .

Note that the following characterization holds.

Corollary 7. Suppose that R : B → ]0,∞[ is a nonautonomous variable. Then
the following statements are equivalent:

(i) R is tempered from above.
(ii) For every ε > 0 and b ∈ B there exists a T > 0 such that

R(θtb) ≤ eε|t| for |t| ≥ T .

Definition 8 (Nonautonomous Projector). A family π = (π(b))b∈B of pro-
jectors π(b) ∈ L(X ,X ) in X is called nonautonomous projector.

(i) π is called tempered from above if b -→ ‖π(b)‖L(X ,X ) is tempered from above.
(ii) π is called N -dimensional for an N ∈ N if dim imπ(b) = N for every b ∈ B.

2.2 Inertial Manifolds for Nonautonomous Dynamical Systems

Now let (X ,Y) be a pair of two Banach spaces such that X is continuously em-
bedded in Y,

X ↪→ Y .

Our goal is to construct an inertial manifold in X . For this we will use some
assumptions with respect to the norm of X . In order to be more general, we will
allow that some assumptions are required only with respect to the weaker norm of
the larger space Y. To compense the different quality of the norms we need some
smoothing action of the dynamical system. Note that in many cases one can use
X = Y, and for a first reading it is good to assume X = Y and to overread the
technical difficulties dealing with the case X �= Y.

Let π1 be an N -dimensional nonautonomous projector in Y. We define the
complementary projector

π2(b) := idY − π1(b) for b ∈ B .
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Then
X1(b) := π1(b)X and X2(b) := π2(b)X , b ∈ B

define nonautonomous sets Xi consisting of complementary linear subspaces Xi(b)
of X , i.e. X1(b)⊕X2(b) = X . For this fact we also write X1⊕X2 = B×X . Further
let

Y1(b) := π1(b)Y and Y2(b) := π2(b)Y , b ∈ B .

We assume that
X1(b) = Y1(b) b ∈ B .

We say that π1 is tempered above in X if the restriction (π1(b)
∣∣
X )b∈B of π1

onto X is tempered above.
We want to construct a nonautonomous inertial manifold

M = (M(b))b∈B

consisting of manifolds M(b) which are trivial in the sense that each of them can
be described by a single chart, i.e.

M(b) = graph(m(b, ·)) := {x1 +m(b, x1) : x1 ∈ X1(b)}

with m(b, ·) = m(b) : X1(b)→ X2(b).
For a positive constant L we introduce the nonautonomous set

CL := {(b, x) ∈ B × X : ‖π2(b)x‖Y ≤ L‖π1(b)x‖Y} .

Since the fibers CL(b) are cones it is called (nonautonomous) cone. The following
definition is a slight generalization of that one in [KS01].

Definition 9 (Cone Invariance). The NDS ϕ satisfies the (nonautonomous)
cone invariance property for a cone CL if there are a function L̃ : ]0,∞[→ ]0,∞[
and a number T0 ≥ 0 such that

L̃(t) ≤ L for t ≥ T0

and such that for b ∈ B and x, y ∈ X ,

x− y ∈ CL(b)

implies
ϕ(t, b)x− ϕ(t, b)y ∈ CL̃(t)(θtb) for t > 0 .

Now we define a property of a cocycle ϕ which describes a kind of squeezing outside
a given cone.
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Definition 10 (Squeezing Property). The NDS ϕ satisfies the (nonautono-
mous) squeezing property for a cone CL if there exist positive constants K1, K2

and η such that for every b ∈ B, x, y ∈ X and T > 0 the identity

π1(θT b)ϕ(T, b)x = π1(θT b)ϕ(T, b)y

implies for all x′ ∈ X with π1(b)x′ = π1(b)x and x′ − y ∈ CL(b) the estimates

‖πi(θtb)[ϕ(t, b)x− ϕ(t, b)y]‖Y ≤ Kie−ηt‖π2(b)[x− x′]‖Y , i = 1, 2 ,

for t ∈ [0, T ].

Remark 11. The cone invariance and squeezing property are generalization and
modifications of the notion of cone invariance and squeezing property for evolution
equations. A combination of both properties is sometimes called strong squeezing
property, and it was first introduced for the Kuramoto-Sivashinsky equations in
[FNST85], [FNST88]. An abstract version of it was developed in [FST89], an-
other formulation of it can be found for example in [Tem88], [FST88], [CFNT89],
[Rob93], [JT96]. Essentially, a strong squeezing property states that if the differ-
ence of two solutions of the evolution equation belongs to a special cone then it
remains in the cone for all further times (that is the cone invariance property);
otherwise the distance between the solutions decays exponentially (that is the
squeezing property).

Definition 12 (Boundedness Property). The NDS ϕ satisfies the (nonauto-
nomous) boundedness property if for all t ≥ 0, b ∈ B and all M1 ≥ 0 there exists
a M2 ≥ 0 such that for x ∈ X with ‖π2(b)x‖X ≤M1 the estimate

‖π2(θtb)ϕ(t, b)x‖X ≤M2

holds.

Definition 13 (Coercivity Property). The NDS ϕ satisfies the (nonautono-
mous) coercivity property if for all t ≥ 0, b ∈ B and all M3 ≥ 0 there exists an
M4 ≥ 0 such that for x ∈ X with ‖π1(b)x‖X ≥M4 the estimate

‖π1(θtb)ϕ(t, b)x‖X ≥M3

holds.

With the boundedness property we will ensure that the graph transformation
mapping can be defined on a complete metric space of bounded functions. The
coercivity property will ensure the existence of global homeomorphisms used for
the definition of the graph transformation mapping.

Remark 14. As we will show later in Sec. 3.2, for evolution equations the coercivity
and boundedness property of ϕ follows from the boundedness of the nonlinearity
and exponential dichotomy properties of the linear part. While a global Lipschitz
property of the nonlinearity is used for the cone invariance and squeezing property,
too, the boundedness of the nonlinearity is an additional restriction.
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Therefore, we introduce now another group of technical assumptions which for evo-
lution equations can be verified without boundedness assumption on the nonlinear
part.

Definition 15 (Stationarity Property). The NDS ϕ satisfies the (nonautono-
mous) stationarity property if there is a uniformly bounded invariant set I.

The stationarity property together with the cone invariance property will allow to
define the graph transformation mapping in a space of linearly bounded functions.

Definition 16 (Strong Coercivity Property). The NDS ϕ satisfies the (non-
autonomous) strong coercivity property with respect to invariant set I and the
cone CL if for all b ∈ B there exist positive numbers M5,M6,M7 such that for
x ∈ I(b) + CL(b) and all t ≥ 0 the estimate

‖π1(b)x‖X ≤M5eM6t(M7 + ‖π1(θtb)ϕ(t, b)x‖X )

holds.

The strong coercivity property will ensure the existence of global homeomor-
phisms used for the definition of the graph transformation mapping and it will be
used to show the contractivity of the graph transformation mapping

Remark 17. As we will show later in Sec. 3.2, for evolution equations the strong
coercivity property of ϕ follows from the uniform boundedness of an invariant set
I and exponential dichotomy properties of the linear part.

If X �= Y we need some properties to compense the weaker norm.

Definition 18 (Smoothing Property). The NDS ϕ satisfies the smoothing
property if there are function M8,M9 : ]0,∞[→ ]0,∞[ such that for x, y ∈ X ,
b ∈ B, and t > 0 the Lipschitz estimates

‖ϕ(t, b)x− ϕ(t, b)y‖X ≤M8(t)‖x− y‖Y

and

‖π1(b)[x− y]‖Y ≤M9(t)‖π1(θtb)[ϕ(t, b)x− ϕ(t, b)y]‖Y if x− y ∈ CL

hold.

Remark 19. For parabolic evolution equations these smoothing property is a conse-
quence of global Lipschitz property of the nonlinearity and the smoothing property
of parabolic equations.

Theorem 20 (Existence of Inertial Manifold). Let ϕ be an NDS on a Ba-
nach space X ↪→ Y over a driving system θ : R× B → B on a set B and assume
that ϕ satisfies the cone invariance and squeezing property.
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Moreover let ϕ satisfy the following technical assumptions:
• ϕ possesses the coercivity and boundedness property

or
• ϕ possesses the strong coercivity and stationarity property with respect to

the invariant set I and the cone CL with a constant M6 < η.
If X �= Y, we further assume that
• ϕ possesses the smoothing property, and that π1 is tempered from above in

X , and that there are constants M10and M11with

‖π2(b)‖L(X ,X ) ≤M10 , ‖π1(b)x‖Y ≤M11‖π1(b)x‖X for x ∈ X , b ∈ B .

Then there exists an inertial manifold M = (M(b))b∈B of ϕ with the following
properties:

(i) M(b) is a graph in X1(b)⊕X2(b),

M(b) = {x1 +m(b, x1) : x1 ∈ X1(b)}

with a mapping m(b, ·) = m(b) : X1(b)→ X2(b) which is globally Lipschitz contin-
uous

‖m(b, x1)−m(b, y1)‖X ≤ L̂‖x1 − y1‖X
with some L̂ ≥ 0, and it satisfies

‖m(b, x1)−m(b, y1)‖Y ≤ L‖x1 − y1‖Y

with L from the cone invariance property.
(ii) M is exponentially attracting in X

‖ϕ(t, b)x− ϕ(t, b)x′‖X ≤ K̂e−ηt‖π2(b)x −m(b, π1(b)x)‖X

for t ≥ 1, i = 1, 2 with an asymptotic phase x′ = x′(b, x) ∈ M(b) of x and some
K̂ independent of x, x′, b, t, and we have

‖πi(θtb)[ϕ(t, b)x − ϕ(t, b)x′]‖Y ≤ Kie−ηt‖π2(b)x−m(b, π1(b)x)‖Y

for t ≥ 0, i = 1, 2 with K1,K2 > 0 from the squeezing property.
(iii) If in addition π1 is tempered from above in X , then M is pullback at-

tracting in X , more precisely, there is a T ≥ 0 such that for each bounded set
D ⊂ X

d(ϕ(t, θ−tb)D|M(b)) ≤ e−ηt/2d(D|M(θ−tb)) for t ≥ T . (1)

Proof. We divide the proof into two parts. In the first part we assume that ϕ pos-
sesses the boundedness and coercivity property. Since the proof is rather involved
we split this part into four steps. In the first step we define the graph transforma-
tion mapping. In the second step we show that it has a unique fixed point m(b)
which gives rise to a nonautonomous invariant setM of Lipschitz manifoldsM(b).
In the third step the exponential tracking property is proved and in the fourth step
we investigate the pullback attractivity of M.
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In the second part we assume that ϕ satisfies the strong coercivity and sta-
tionarity property. There we will repeat only these parts of the proof which are
changing.

Part I: Let ϕ satisfy the boundedness and coercivity property.

Step 1: Definition of graph transformation mapping
We construct the manifolds M(b) = graph(m(b)) as the fixed point of the

cocycle ϕ acting on a certain class of functions g with

g(b, ·) = g(b) : X1(b)→ X2(b) , b ∈ B .

The set G of mappings of the form

X1 . (b, x1) -→ (b, g(b, x1)) ∈ X2 ,

such that g is bounded and g(b, ·) is continuous for every b ∈ B is a Banach space
with the norm

‖g‖G = sup
(b,x1)∈X1

‖g(b, x1)‖X .

Moreover let GL denote the subset of G containing all mappings which satisfy the
global Lipschitz condition

‖g(b, x1)− g(b, y1)‖Y ≤ L‖x1 − y1‖Y

for (b, x1), (b, y1) ∈ X1 with L from the cone invariance property. Note that both
G and GL ⊂ G are complete metric spaces.

Let T > 0 be arbitrary, but fixed. We wish to define the graph transformation
mapping GT : GL → G such that

graph((GT g)(θT b, ·)) = ϕ(T, b)graph(g(b, ·))

and this means that x̃ ∈ graph((GT g)(θT b, ·)) equals ϕ(T, b)x for some x ∈
graph(g(b, ·)). More precisely, for an x̃1 ∈ X1(θT b) we want to define

(GT g)(θT b, x̃1) = x̃2 ∈ X2(θT b)

by determining an x ∈ graph(g(b, ·)) such that

π1(θT b)ϕ(T, b)x = x̃1 and π2(θT b)ϕ(T, b)x =: (GT g)(θT b, x̃1) .

To this end we show that for each T > 0, b ∈ B, x̃1 ∈ X1(θT b), g ∈ GL, the
boundary value problem

x ∈ graph(g(b, ·)) , π1(θT b)ϕ(T, b)x = x̃1 (2)

has a unique solution x = β(T, b, x̃1, g).
Uniqueness of a solution of (2). Assume there exist x and y with

x, y ∈ graph(g(b, ·)) , π1(θT b)ϕ(T, b)x = π1(θT b)ϕ(T, b)y = x̃1 .
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We get x−y ∈ CL(b) and the squeezing property (with x′ = x) implies the identity

ϕ(t, b)x = ϕ(t, b)y for t ∈ [0, T ] .

Hence x = y and there is at most one solution x = β(T, b, x̃1, g) of (2).
Existence of a solution of (2). Note that by assumption X1(b) = Y1(b) for b ∈ B.

Let T > 0, b ∈ B, g ∈ GL be fixed and define H : X1(b)→ X1(θT b) by

H(x1) := π1(θT b)ϕ(T, b)(x1 + g(b, x1)) .

By the continuity of ϕ(T, b) and g(b, ·), H is continuous. For x̃1 ∈ HX1(b) ⊂
X1(θT b), any x1 in the preimage H−1(x̃1) = {x1 ∈ X1(b) : H(x1) = x̃1} gives
rise to a solution x = x1 + g(b, x1) of the boundary value problem (2). As we
have already seen, there exists at most one solution denoted by β(T, b, x̃1, g) and
therefore the inverse H−1 of H is given by

H−1(x̃1) = π1(b)β(T, b, x̃1, g) on HX1(θT b) .

Now we show the continuity of H−1 : HX1(b) → X1(b). Suppose, there is a ξ̃ ∈
HX1(b) ⊂ X1(θT b) such that H−1 is not continuous at ξ̃. Then there are ε > 0
and a sequence (ξ̃k)k∈N in X1(θT b) such that ξ̃k → ξ̃0 as k →∞ and

‖ξk − ξ0‖X ≥ ε for all k ∈ N (3)

where ξk := π1(b)β(T, b, ξ̃k, g) for k = 0, 1, . . ..
First, we suppose that there is a subsequence of (ξk)k∈N, denoted for shortness

again by (ξk)k∈N, with ‖ξk‖X →∞ as k →∞. Then the coercivity property of ϕ
implies

‖ξ̃k‖X = ‖H(ξk)‖X = ‖π1(θT b)ϕ(T, b)(ξk + g(b, ξk))‖X →∞ as k →∞ ,

but this contradicts ξ̃k → ξ̃0.
Therefore we have proved that (ξk)k∈N is bounded. Since X1(b) is a finite-

dimensional space, there is a convergent subsequence, denoted for shortness again
by (ξk)k∈N, with a limit

ξ∞ = lim
k→∞

ξk ∈ X1(b) . (4)

By the continuity of H , we have H(ξk)→ H(ξ∞). Since also H(ξk) = ξ̃k → ξ̃0 =
H(ξ0) we get ξ0 = ξ∞ in contradiction to (3) and (4). Therefore, H and H−1 are
continuous.

Now we show that H is onto, i.e. satisfies

HX1(b) = X1(θT b) . (5)

By the coercivity of ϕ, we have the norm coercivity ‖H(ξ)‖X →∞ for ‖ξ‖X →∞
of H . Since X1(b) is finite-dimensional, H is a sequentially compact mapping. By
[Rhe69, Theorem 3.7], H is a homeomorphism from X1(b) onto X1(θT b) and hence
we have (5).
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Thus we have unique solvability of (2), and we can define the graph transfor-
mation mapping GT by

(GT g)(θT b, x̃1) = π2(θT b)ϕ(T, b)β(T, b, x̃1, g)

for T > 0, b ∈ B, x̃1 ∈ X1(θT b), and g ∈ GL. Note that we have

graph((GT g)(θT b, ·)) = ϕ(T, b)graph(g(b, ·)) .
Since H−1 : X1(θT b)→ X1(b), g(b, ·) : X1(b)→ X2(b) and π1(b)ϕ(T, b) : X →

X are continuous, and

β(T, b, x̃1, g) = H−1(x̃1) + g(b,H−1(x̃1))

holds, the mapping (GT g)(θT b, ·) : X1(θT b)→ X2(θT b) is also continuous.
Now we show that

‖GT g‖G <∞ .

Since g ∈ G there is a M1 with ‖π2(b)x‖X ≤ M1 for all b ∈ B and all x ∈
graph(g(b, ·)). By the boundedness property of ϕ there is a M2 such that

‖π2(θT b)ϕ(t, b)x‖X ≤M2

for all b ∈ B and all x ∈ X with ‖π2(b)x‖X ≤ M1. Let b ∈ B0, x̃1 ∈ X1(θT b) be
arbitrary. Then β(T, b, x̃1, g) ∈ graph(g(b, ·)), hence ‖π2(b)β(T, b, x̃1, g)‖X ≤ M1,
and therefore

‖(GT g)(θT b, x̃1)‖X = ‖π2(θT b)ϕ(T, b)β(T, b, x̃1, g)‖X ≤M2

proving that ‖GT g‖G <∞, i.e. GT g ∈ G.
Let T > 0, b ∈ B, x̃1, x̃2 ∈ X1(θT b), g ∈ GL be arbitrary. Since β(T, b, x̃1, g),

β(T, b, x̃2, g) ∈ graph(g(b, ·)), we get

β(T, b, x̃1, g)− β(T, b, x̃2, g) ∈ CL(b) (6)

and the cone invariance property implies for T ≥ T0 a Lipschitz estimate for GT g,

‖(GT g)(θT b, x̃1)− (GT g)(θT b, x̃2)‖Y
≤ L‖π1(θT b)(ϕ(T, b)β(T, b, x̃1, g)− ϕ(T, b)β(T, b, x̃2, g))‖Y
= L‖x̃1 − x̃2‖Y ,

i.e. (GT g)(θT b, ·) satisfies a Lipschitz condition as mapping from Y1(b) into Y
with Lipschitz constant L. Thus GT maps GL into G for every T ≥ 0, and it is
self-mapping for T ≥ T0.

Moreover, using the smoothing property, for T > 0 we obtain

‖(GT g)(θT b, x̃1)− (GT g)(θT b, x̃2)‖X
≤ ‖π2(θT b)‖L(X ,X )‖ϕ(T, b)β(T, b, x̃1, g)− ϕ(T, b)β(T, b, x̃2, g)‖X
≤M10M8(T )‖β(T, b, x̃1, g)− β(T, b, x̃2, g)‖Y
≤ (1 + L)M8(T )M10‖π1(b)[β(T, b, x̃1, g)− β(T, b, x̃2, g)]‖Y
≤ (1 + L)M8(T )M9(T )M10‖x̃1 − x̃2‖Y
≤ L̂‖x̃1 − x̃2‖X
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where
L̂ := (1 + L)M8(T )M9(T )M10M11 .

Step 2: Unique fixed-point of graph transformation mappings
Let T ≥ 0, b ∈ B, x̃1 ∈ X1(θT b), g, h ∈ G, and x ∈ graph(g(b, ·)), y ∈

graph(h(b, ·)) with

π1(θT b)ϕ(T, b)x = π1(θT b)ϕ(T, b)y = x̃1 .

Define
x′ := π1(b)x+ h(b, π1(b)x) .

Then x′ − y ∈ CL, and the squeezing property implies

‖πi(θtb)[ϕ(t, b)x− ϕ(t, b)y]‖Y ≤ K2e−ηt‖g(b, π1(b)x) − h(b, π1(b)x)‖Y

for t ∈ [0, T ]. If X = Y we obtain

‖(GT g)(θT b, x̃1)− (GTh)(θT b, x̃1)‖X
≤ K2e−ηT ‖g(b, π1(b)β(T, b, x̃1, g))− h(b, π1(b)β(T, b, x̃1, g))‖X ,

and passing to the sup over all (θT b, x̃1) ∈ X1 we get

‖GT g −GTh‖G ≤ κ(T )‖g − h‖G (7)

for all T > 0, g, h ∈ GL, where

κ(T ) := K2e−ηT .

If X �= Y we proceed as follows: Because of

(GT g)(θT b, x̃i) = π2(θT b)ϕ(1, θT−1b)ϕ(T − 1, b)β(T, b, x̃i, g)

and using the smoothing property and the continuous embedding of X in Y we
find

‖(GT g)(θT b, x̃i)− (GT g)(θT b, x̃i)‖X
≤M10M8(1)‖ϕ(T − 1, b)β(T, b, x̃1, g)− ϕ(T − 1, b)β(T, b, x̃2, g)‖Y
≤ κ(T )‖g(b, π1(b)β(T, b, x̃1, g))− h(b, π1(b)β(T, b, x̃1, g))‖X

and hence (7) with

κ(T ) = (K1 +K2)M8(1)M10Ce−η(T−1)

for T > 1, where C is an embedding constant for the embedding from X into Y.
Since η > 0 and since π2 is tempered from above in X , there is a positive

T1 ≥ T0 with κ(T ) < 1 for T ≥ T1. Thus, for T ≥ T1, GT is a contractive self-
mapping on the complete metric space GL. Now choose and fix an arbitrary T̃ ≥ T1
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and letm denote the unique fixed-point of GT̃ in GL. We show thatm is the unique
fixed-point of GT for every T ≥ 0.

For every T ≥ 0 the mapping GTm ∈ G is uniquely determined by the graphs

graph((GTm)(θT b, ·)) = ϕ(T, b)graph(m(b, ·)) , b ∈ B .

For T ≥ 0 and b ∈ B we have the identity

graph((GT+T̃m)(θT+T̃ b, ·)) = ϕ(T + T̃ , b)graph(m(b, ·))
= ϕ(T, θT̃ b)ϕ(T̃ , b)graph(m(b, ·))
= ϕ(T, θT̃ b)graph(m(θT̃ b, ·))
= graph((GTm)(θT+T̃ b, ·))

and therefore GTm = GT+T̃m ∈ GL. Hence the composition GTGT ′
m makes sense

for T, T ′ ≥ 0 and we get

graph((GTGT ′
m)(θT+T ′b, ·)) = ϕ(T, θT ′b)graph(GT ′

m(θT ′b, ·))
= ϕ(T, θT ′b)ϕ(T ′, b)graph(m(b, ·))
= ϕ(T + T ′, b)graph(m(b, ·))
= graph((GT+T ′

m)(θT+T ′b, ·))

and therefore GTGT ′
m = GT ′

GTm = GT+T ′
m for T, T ′ ≥ 0. We get

GT̃ (GTm) = GT (GT̃m) = GTm .

Thus GTm equals the unique fixed-point m of GT̃ and we have

GTm = m for T ≥ 0 .

To prove the uniqueness of the fixed-point m of GT , assume that m∗ is another
fixed-point. But then m and m∗ are both fixed-points of GkT for every k ∈ N.
Choosing k large enough such that kT ≥ T1 we know that GkT has a unique
fixed-point and this implies m = m∗.

Thus m is the unique mapping in GL with the invariance property

ϕ(t, b)graph(m(b, ·)) = graph(m(θtb, ·)) for t ≥ 0 and b ∈ B .

We define M(b) := graph(m(b, ·)) for b ∈ B.

Step 3: Existence of asymptotic phases
Let b ∈ B and x ∈ X be arbitrary and let (tk)k∈N be a monotonously increasing

sequence of positive real numbers tk with tk → ∞ for k → ∞. Define y′ :=
π1(b)x+m(b, π1(b)x) ∈ graph(m(b, ·)) and

xk := β(tk, b, π1(θtkb)ϕ(tk, b)x,m) ∈ graph(m(b, ·)) .
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We get y′ − xk ∈ CL(b) and the squeezing property implies for i = 1, 2, t ∈ [0, tk]

‖πi(θtb)[ϕ(t, b)x− ϕ(t, b)xk]‖Y ≤ Kie−ηt‖π2(b)x−m(b, π1(b)x)‖Y .

In particular, we find for i = 1 and t = 0

‖π1(b)xk‖Y ≤ ‖π1(b)x‖Y + ‖π1(b)[x− xk]‖Y
≤ ‖π1(b)x‖Y +K1‖π2(b)x−m(b, π1(b)x)‖Y .

Therefore we have proved that (π1(b)xk)k∈N ⊂ X1(b) = Y1(b) is bounded. Since
X1(b) is a finite-dimensional space, there is a convergent subsequence, denoted
again by (π1(b)xk)k∈N. Since

xk = π1(b)xk +m(b, π1(b)xk)

and m(b, ·) is continuous, also (xk)k∈N is converging to some

x′ ∈ graph(m(b, ·)) .

Then we get for i = 1, 2

‖πi(θtb)[ϕ(t, b)x− ϕ(t, b)x′]‖Y
≤ ‖πi(θtb)[ϕ(t, b)x− ϕ(t, b)xk]‖Y + ‖πi(θtb)[ϕ(t, b)xk − ϕ(t, b)x′]‖Y
≤ Kie−ηt‖π2(b)x−m(b, π1(b)x)‖Y + ‖πi(θtb)[ϕ(t, b)xk − ϕ(t, b)x′]‖Y

for all T > 0, t ∈ [0, T ] and all k ∈ N>0 with tk ≥ T . By the continuity of ϕ(t, b),
and because of xk → x′, the second term can be made arbitrary small for each
fixed t ∈ [0, T ] choosing k large enough. Therefore,

‖πi(θtb)[ϕ(t, b)x − ϕ(t, b)x′]‖Y ≤ Kie−ηt‖π2(b)x−m(b, π1(b)x)‖Y

for t ≥ 0, i.e. x′ ∈M(b) is an asymptotic phase of x if X = Y.
If X �= Y, then we note that the smoothing property and the continuous

embedding of X in Y implies the existence of a constant K̂ with

‖ϕ(t, b)x− ϕ(t, b)x′‖X ≤ K̂e−ηt‖π2(b)x−m(b, π1(b)x)‖X for t ≥ 1 .

Step 4: Pullback attractivity
Note that with π1 also the complementary projector π2 is tempered from above.

Since ϕ(t, b)x′ ∈M(θtb) for every x ∈ X , t ≥ 0, b ∈ B. Step 3 implies

d(ϕ(t, b)x,M(θtb)) ≤ K̂e−ηt‖π2(b)[x − x′]‖X for t ≥ 1

with x′ = π1(b)x+m(b, π1(b)x) and some constant K̂. Let z ∈M(b) be arbitrary.
Then, because of x′ ∈ M(b), the Lipschitz property of m, and π1(b)x = π1(b)x′,

‖π2(b)[x − x′]‖X ≤ ‖π2(b)[x− z]‖X + L̂‖π2(b)[z − x′]‖X
=
(
‖π2(b)‖L(X ,X ) + L̂‖π1(b)‖L(X ,X )

)
‖x− z‖X .
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Hence

‖π2(b)[x− x′]‖X ≤
(
‖π2(b)‖L(X ,X ) + L̂‖π1(b)‖L(X ,X )

)
d(x,M(b)) .

Replacing b by θ−tb, choosing a T > 1 such that

K̃ ·
(
‖π2(θ−tb)‖L(X ,X ) + L‖π1(θ−tb)‖L(X ,X )

)
≤ e

η
2 t for t ≥ T

(Corollary 7), we obtain

d(ϕ(t, θ−tb)x,M(b)) ≤ e−
η
2 td(x,M(θ−tb)) ≤ e−

η
2 td(D,M(θ−tb))

for t ≥ T proving the pullback attractivity of M with T independent of D.

Part II: Let ϕ satisfy the stationarity property and strong coercivity property
with respect to the invariant set I and the cone CL with a constant M6 < η.

The main difference in comparison to Part I concerns the utilization of another
complete metric space (a space of linearly bounded functions instead of a space of
bounded functions) and therefore an appropriate proof of contraction property of
the graph transformation mapping.

Let G be the set mappings of the form

X1 . (b, x1) -→ (b, g(b, x1)) ∈ X2 ,

such that x1 + g(b, x1) ∈ I(b) + CL(b) for every (b, x1) ∈ X1 and that g(b, ·) is
linearly bounded uniformly in b. i.e., for g there are C1, C2 ≥ 0 with

‖g(b, x1)‖X ≤ C0 + C1‖x1‖Y for (b, x1) ∈ X1 = Y1 .

We equipped G with the norm

‖g‖G = sup
(b,x1)∈X1

‖g(b, x1)‖X
M7 + ‖x1‖Y

.

As in the proof of Theorem 20, let GL denote the subset of G containing all map-
pings which satisfy the global Lipschitz condition

‖g(b, x1)− g(b, y1)‖Y ≤ L‖x1 − y1‖Y

for (b, x1), (b, y1) ∈ X1 with L from the cone invariance property. Note that both
G and GL ⊂ G are complete metric spaces.

As in the proof of Theorem 20, the strong coercivity property and the squeezing
property allow to define the graph transformation mapping GT : GL → G for T > 0
by

(GT g)(θT b, x̃1) = π2(θT b)ϕ(T, b)β(T, b, x̃1, g)

for T > 0, b ∈ B, x̃1 ∈ X1(θT b), and g ∈ GL, where x = β(T, b, x̃1, g) ∈ I(b)+CL(b)
is the unique solution of the boundary value problem

x ∈ graph(g(b, ·)) , π1(θT b)ϕ(T, b)x = x̃1 . (8)
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The cone invariance property implies

‖(GT g)(θT b, x̃1)− (GT g)(θT b, x̃2)‖X ≤ L̃(T )‖x̃1 − x̃2‖X

for T ≥ T0, b ∈ B, x̃1, x̃2 ∈ X1(θT b), g ∈ GL. Especially, by the stationarity prop-
erty for each x ∈ I(b) with π2(b)x = g(b, π1(b)x) we have x̃2 + (GT g)(θT b, x̃2) ∈
I(θT b) for x̃2 = π1(θT b)x. Therefore

‖(GT g)(b, x1)− (GT g)(b, x2)‖Y ≤ L‖x1 − x2‖Y

and
(GT g)(b, x1) ∈ I(b) + CL

for T ≥ T0, b ∈ B, x1, x2 ∈ X1(b), g ∈ GL. As in Step 1 of Part I of the proof
follows that GT g is a Lipschitz mapping from X1 into X2. Thus, GT maps GL into
itself for T ≥ T0.

Remains to show the contractivity of GT with respect to the norm ‖ · ‖G of the
new space G. Proceeding as in Step 2 of Part I of the proof, the squeezing property
implies

‖π2(θtb)[ϕ(t, b)x− ϕ(t, b)y]‖Y ≤ K2e−ηt‖g(b, π1(b)x) − h(b, π1(b)x)‖Y

for t ∈ [0, T ]. We restrict us to the more complicate case X �= Y. Because of

(GT g)(θT b, x̃i) = π2(θT b)ϕ(1, θT−1b)ϕ(T − 1, b)β(T, b, x̃i, g)

and using the smoothing property and the continuous embedding of X in Y we
find

‖(GT g)(θT b, x̃i)− (GT g)(θT b, x̃i)‖X
≤M10M8(1)‖ϕ(T − 1, b)β(T, b, x̃1, g)− ϕ(T − 1, b)β(T, b, x̃2, g)‖Y
≤ κ̃(T )‖g(b, π1(b)β(T, b, x̃1, g))− h(b, π1(b)β(T, b, x̃1, g))‖X

with
κ̃(T ) = (K1 +K2)M8(1)M10Ce−η(T−1)

for T > 1 where C is an embedding constant for the embedding from X into Y.
Thus

‖(GT g)(θT b, x̃1)− (GTh)(θT b, x̃1)‖X
M7 + ‖π1(θT b)x̃1‖X

≤ κ̃(T )k5
‖g(b, π1(b)β(T, b, x̃1, g))− h(b, π1(b)β(T, b, x̃1, g))‖X

M7 + ‖π1(b)β(T, b, x̃1, g)‖X

with

k5 :=
M7 + ‖π1(b)β(T, b, x̃1, g)‖X

M7 + ‖π1(θT b)x̃1‖X
.
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Using the strong coercivity property we find

k5 ≤
M7 +M5eM6T (M7 + ‖π1(θT b)x̃1‖X )

M7 + ‖π1(θT b)x̃1‖X
≤ 1 +M5eM6T

and passing to the sup over all (θT b, x̃1) ∈ X1 we get

‖GT g −GTh‖G ≤ κ(T )‖g − h‖G

for all T > 1, g, h ∈ GL, where

κ(T ) := (1 +M5eM6T )κ̃(T )

= (1 +M5eM6T )‖π2(θT b)‖L(X ,X )M8(1)C(K1 +K2)e−η(T−1) .

Since η > M6 and since π2 is tempered from above in X , there is a positive T1 ≥ T0
with κ(T ) < 1 for T ≥ T1. Thus, for T ≥ T1, GT is a contractive self-mapping on
the complete metric space GL.

The rest of the proof proceeds as in the first part of the proof.

3 Nonautonomous Evolution Equations

3.1 Two-Parameter Semi-Flow

Let (X , ‖ · ‖X ) be a Banach space. The solutions of a nonautonomous evolution
equation will not generate a semi-flow but a two-parameter semi-flow.

Definition 21 (Two-parameter Semi-Flow). A two-parameter semi-flow µ
on X is a continuous mapping

{(t, s, x) ∈ R× R×X : t ≥ s} . (t, s, x) -→ µ(t, s, x) ∈ X

which satisfies
(i) µ(s, s, ·) = idX for s ∈ R;
(ii) the two-parameter semi-flow property for t ≥ τ ≥ s, x ∈ X , i.e.

µ(t, τ, µ(τ, s, x)) = µ(t, s, x) .

The next lemma explains how a two-parameter semi-flow defines an NDS.

Lemma 22 (Two-parameter Semi-Flow defines NDS). Suppose that µ is a
two-parameter semi-flow. Then ϕ : R≥0 × B × X → X ,

ϕ(t, b)x = µ(t+ b, b, x) (9)

is an NDS with base B = R and driving system θ : R× B → B,

θ(t)b = t+ b .

Moreover, for t ≥ s and x ∈ X the relation µ(t, s, x) = ϕ(t− s, s)x holds.
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Proof. θ is a dynamical system. We have

ϕ(0, b) = µ(b, b, ·) = idX .

We use the two-parameter semi-flow property of µ to obtain for t, s ≥ 0, b ∈ B

ϕ(t+ s, b) = µ(t+ s+ b, b, ·)
= µ(t+ s+ b, s+ b, µ(s+ b, b, ·))
= ϕ(t, θsb) ◦ ϕ(s, b) ,

proving the cocycle property of ϕ. The continuity of µ implies the continuity
of (t, x) -→ ϕ(t, b)x. Now substitute t by t − s and b by s in (9) to see that
µ(t, s, x) = ϕ(t− s, s)x.

Translating the definitions for nonautonomous dynamical systems to two-pa-
rameter semi-flows we obtain the following properties:

Condition 23 (Cone Invariance Property). There are L > 0 and T0 ≥ 0 such that
for τ ∈ R and x, y ∈ X ,

x− y ∈ CL(τ) := {ξ : ‖π2(τ)ξ‖Y ≤ L‖π1(τ)ξ‖Y}

implies
µ(t, τ, x)− µ(t, τ, y) ∈ CL(t) for t ≥ τ + T0 .

Condition 24 (Squeezing Property). There exist positive constants K1, K2 and η
such that for every τ ∈ R, x, y ∈ X and T > 0 the identity

π1(τ + T )µ(τ + T, τ, x) = π1(τ + T )µ(τ + T, τ, y)

implies for all x′ ∈ X with π1(τ)x′ = π1(τ)x and x′ − y ∈ CL(τ) the estimates

‖πi(t) [µ(t, τ, x)− µ(t, τ, y)] ‖Y ≤ Kie−η(t−τ)‖π2(τ) [x− x′] ‖Y , i = 1, 2,

for t ∈ [τ, τ + T ].

Condition 25 (Boundedness Property). For all t, τ ∈ R with t ≥ τ and all M1 ≥ 0
there exists a M2 ≥ 0 such that for x ∈ X with ‖π2(τ)x‖X ≤M1 the estimate

‖π2(t)µ(t, τ, x)‖X ≤M2

holds.

Condition 26 (Coercivity Property). For all t, τ ∈ R with t ≥ τ and all M3 ≥ 0
there exists a M4 ≥ 0 such that for x ∈ X with ‖π1(τ)x‖X ≥M4 the estimate

‖π1(t)µ(t, τ, x)‖X ≥M3

holds.
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Condition 27 (Stationarity Property). There is a uniformly bounded invariant set
I.

Condition 28 (Strong Coercivity Property). For all τ ∈ R there exist positive num-
bers M5, M6, M7 such that for x ∈ I(τ) + CL and all t ≥ τ the estimate

‖π1(τ)x‖Y ≤M5eM6(t−τ)(M7 + ‖π1(t)µ(t, τ, x)‖Y)

holds.

Condition 29 (Smoothing Property). There are functions M8,M9 : ]0,∞[→ ]0,∞[
such that for x, y ∈ X , τ ∈ R, and t > τ the Lipschitz estimates

‖µ(t, τ, x)− µ(t, τ, y)‖X ≤M8(t− τ)‖x − y‖Y

and

‖π1(τ)[x− y]‖X ≤M9(t− τ)‖π1(t)[µ(t, τ, x)−µ(t, τ, y)]‖X if x− y ∈ CL (10)

hold.

Theorem 30 (Inertial Manifold for Two-parameter Semi-Flow).
Suppose that µ is a two-parameter semi-flow on X and let (πi(τ))τ∈R ⊂ L(X ),
i = 1, 2, be two families of complementary projectors π1(τ) and π2(τ). Let µ
satisfy the cone invariance and squeezing property. Moreover, let

• the boundedness and coercivity property
or

• the stationarity and strong coercivity property with respect to the invariant
set I and the cone CL with M6 < η
be satisfied.

If X �= Y, we further assume that µ possesses the smoothing property, that π1
is tempered from above in X , and that there are constants M10 and M11 with

‖π2(τ)‖L(X ,X ) ≤M10 , ‖π1(τ)x‖Y ≤M11‖π1(τ)x‖X for x ∈ X , τ ∈ R .

Then there exists an inertial manifold M = (M(τ))τ∈R of µ with the following
properties:

(i) M(τ) is a graph in π1(τ)X ⊕ π2(τ)X ,

M(τ) = {x1 +m(τ, x1) : x1 ∈ π2(τ)X} ⊂ I(τ) + CL

with a mapping m(τ, ·) = m(τ) : π1(τ)X → π2(τ)X which is globally Lipschitz
continuous

‖m(τ, x1)−m(τ, y1)‖X ≤ L̂‖x1 − y1‖X ,
with some L̂, and

‖m(τ, x1)−m(τ, y1)‖Y ≤ L‖x1 − y1‖Y
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with L from the cone invariance property.
(ii) M is exponentially attracting,

‖µ(t, τ, x)− µ(t, τ, x′)‖X ≤ K̂e−η(t−τ)‖π2(τ)x −m(τ, π1(τ)x)‖X

for t ≥ τ + 1 with an asymptotic phase x′ = x′(τ, x) ∈ M(τ) of x and some K̂,
moreover

‖πi(t)[µ(t, τ, x) − µ(t, τ, x′)]‖Y ≤ Kie−η(t−τ)‖π2(τ)x −m(τ, π1(τ)x)‖Y

for t ≥ τ , i = 1, 2, and the constants K1,K2 > 0 from the squeezing property.

Proof. By Lemma 22, the two-parameter semi-flow µ defines an NDS ϕ with base
B = R and driving system θ : R × B → B with θ(t)τ = t + τ , τ = b ∈ B. Now
Theorem 30 follows from Theorem 20.

In the next two subsections we verify the assumptions of Theorem 30 for evolution
equations under the assumptions of exponential dichotomy conditions on the linear
part or under the requirement that the linear part A is constant and selfadjoint
such that we may use the eigenvalues of A.

3.2 Exponential Dichotomy Conditions

Let X ↪→ Y ↪→ Z be Banach spaces equipped with norms ‖ · ‖X , ‖ · ‖Y , ‖ · ‖Z ,
and let (A(t))t∈R be a family of densely defined linear operators A(t) on Z with
domain D(A(t)) in Z. We consider a nonautonomous evolution equation

ẋ+A(t)x = f(t, x) (11)

which satisfies the following assumptions:
(A1) Linearly A(t):
• Existence of evolution operator of the linear system: Under suitable additional

assumptions on X , Z, A and f (see for example [Hen81], [DKM92], [Lun95]), we
may define the evolution operator Φ : {(t, s) ∈ R2 : t ≥ s} → L(Z,Z) of the linear
equation

ẋ+A(t)x = 0 (12)

in Z as the solution of

d

dt
Φ(t, s) +A(t)Φ(t, s) = 0 for t > s, s ∈ R

and
Φ(τ, τ) = idZ for τ ∈ R .

• There are constants k0, . . . , k4 ≥ 1, β2 > β1, γ ∈ [0, 1[, a monotonously
decreasing function ψ ∈ C(R>0,R>0) with ψ(t) ≤ k0t

−γ , and a family π1 =
(π1(t))t∈R of linear, invariant projectors π1(t) : Z → Z, i.e.

π1(t)Φ(t, s) = Φ(t, s)π1(s) for t ≥ s,
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such that Φ(t, s)π1(s) can be extended to a linear, bounded operator for t ∈ R

with
d

dt
Φ(t, s)π1(s) +A(t)Φ(t, s)π1(s) = 0 for t, s ∈ R

and
‖Φ(t, s)π1(s)‖L(Y,Y) ≤ k1e−β1(t−s) for t ≤ s ,

‖Φ(t, s)π2(s)‖L(Y,Y) ≤ k2e−β2(t−s) for t ≥ s ,

‖Φ(t, s)π1(s)‖L(Z,Y) ≤ k3e−β1(t−s) for t ≤ s ,
‖Φ(t, s)π2(s)‖L(Z,Y) ≤ k4ψ(t− s)e−β2(t−s) for t > s

(13)

with π2, π2(t) = idZ − π1(t), as the complementary projector to π1 in Z.
For the case X �= Y we need the additional estimates

‖Φ(t, s)π1(s)‖L(X ,X ) ≤ k5e−β1(t−s) for t ≤ s ,
‖Φ(t, s)π2(s)‖L(X ,X ) ≤ k5e−β2(t−s) for t ≥ s ,
‖Φ(t, s)π1(s)‖L(Z,X ) ≤ k6e−β1(t−s) for t ≤ s ,
‖Φ(t, s)π2(s)‖L(Z,X ) ≤ k6(t− s)−αe−β2(t−s) for t > s ,

‖Φ(t, s)‖L(Y,X ) ≤ k7(t− s)−γe−β0(t−s) for t > s ,
‖Φ(t, s)‖L(Z,X ) ≤ k8(t− s)−αe−β0(t−s) for t > s

(14)

and

‖π2(τ)‖L(X ,X ) ≤M10 , ‖π1(τ)x‖Y ≤M11‖π1(τ)x‖X for x ∈ X , τ ∈ R .
(15)

with nonnegative constants k5, k6, k7, k8, M10,M11 and constants β0 > 0, α ∈
[γ, 1[.

(A2) Nonlinearity f(t, x): The nonlinear function f ∈ C(R×X ,Z) is assumed
to satisfy the Lipschitz inequality

‖πi(t)[f(t, x) − f(t, y)]‖Z ≤ γi(‖π1(t)[x − y]‖Y , ‖π2(t)[x− y]‖Y) (16)

for all t ∈ R, x, y ∈ X , where γi are suitable norms on R2.
(A3) Existence of mild solutions: We have the existence and uniqueness of the

mild solutions
µ(·, τ, ξ) ∈ C([τ,∞[,X )

of (11) with initial condition x(τ) = ξ ∈ X , i.e. let µ be the continuous solution of
the integral equation

x(t) = Φ(t, τ)ξ +
∫ t

τ

Φ(t, r)f(τ, x(r)) dr for t ≥ τ .

These were the assumptions.

Remark 31. Conditions like our assumptions can be found in the literature and
they are standard for ordinary differential equations and for time-independent evo-
lution equations in the non-selfadjoint case, see for example [Tem97]. For concrete
examples of the realization of these assumptions we refer to Sec. 4, where we will
apply our following Theorem 42 on the existence of inertial manifolds in these
special situations.
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Remark 32. 1. If X = Y then we choose ki + 4 = ki for i = 1, 2, 3, 4.
2. In the special cases k1 = k2 = 1, ψ = 1, γi(w) = ^i1|w1| + ^i2|w2|, the

following considerations can be drastically simplified: For k1 = k2 = 1 we can
show the cone invariance property with T0 = 0 and constant L̃. If ψ = 1 we
don’t have a singularity in the integral inequalities for the estimation of solutions.
If γ1, γ2 have the above mentioned structure then we can use linear comparison
problems.

In order to apply Theorem 30, we have to show the cone invariance property
and the squeezing property for the two-parameter semi-flow µ with respect to the
projector π1.

For fixed r1, r2 ≥ 0 and T ≥ 0, we define

(Λ1w)(t) := k3

∫ T

t

e−β1(t−r)γ1(w(r)) dr ,

(Λ2w)(t) := k4

∫ t

0

ψ(t− r)e−β2(t−r)γ2(w(r)) dr + k2e−β2tLw1(0)

and
q(t) :=

(
k1e−β1(t−T )r1, k2e−β2tr2

)
for t ∈ [0, T ] and w ∈ C([0, T ],R2). Then q ∈ C([0, T ],R2

≥0). Because of ψ(t) ≤
k0t

−γ with γ ∈ [0, 1[, Λ is an at most weakly singular integral operator from
C([0, T ],R2) into C([0, T ],R2). Moreover, Λ is completely continuous.

Lemma 33. Assume there are L̃ : ]0,∞[→ ]0,∞[, L > 0 and T0 ≥ 0 such that

L̃(T ) ≤ L for T ≥ T0

and such that
v2(T ) ≤ L̃(T )r1 (17)

holds for each solution v ∈ C([0, T ],R2
≥0) of

vi(t) ≤ (Λv)i (t) + qi(t) for i = 1, 2, t ∈ [0, T ] (18)

with r1 ≥ 0, r2 = 0. Then µ possesses the cone invariance property with respect
to π with the parameters L̃, L and T0.

Proof. See [KS01] for X = Y.

Lemma 34. Assume there are positive numbers L, η, K1, K2 such that

vi(t) ≤ Kie−ηtr2 for t ∈ [0, T ] (19)

holds for each T > 0 and each solution v ∈ C([0, T ],R2
≥0) of (18) with r1 = 0, r2 ≥

0. Then µ possesses the squeezing property with respect to π with the parameters
L, η, K1, K2.
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Proof. See [KS01].

To estimate the solutions v of (18), we use the following comparison theorem for
monotone iterations in ordered Banach spaces. The basic ideas and notions go
back for example to [KLS89].

Let B be a Banach space and let C be an order cone in B. The order cone C
induces a semi-order ≤C in B by

u ≤C w :⇐⇒ w − u ∈ C .

The norm in B is called semi-monotone if there is a constant c with ‖x‖B ≤ c‖y‖B

for each x, y ∈ B with 0 ≤C x ≤C y. The cone C is called normal if the norm in
is semi-monotone, and C is called solid if C contains an open ball with positive
radius.

Note that C([0, T ],RN
≥0) is a normal, solid cone in C([0, T ],RN).

In a Banach space B with normal and solid cone C, we study the fixed-point
problem

u = Pu+ p (20)

with p ∈ B and P : B→ B. We assume that P is completely continuous, increas-
ing,

Pu ≤C Pv if u ≤C v ,

subadditive,
P (u+ v) ≤C Pu+ Pv , u, v ∈ C ,

and homogeneous with respect to nonnegative factors,

P (λu) = λPu λ ∈ R≥0 , u ∈ C .

Definition 35. A function w ∈ B is called upper (lower) solution of (20) if Pw+
p ≤C w (w ≤C Pw + p).

We need the existence of a unique solution w ∈ C of (20) and an estimation of
lower solutions v ∈ C of (20) by solutions or upper solutions of (20).

Lemma 36. Assume that there are y ∈ intC and δ ∈ [0, 1[ with

Py ≤C δy .

Then there is a unique solution x∗ of (20) in C and

x ≤C x∗ ≤C x (21)

holds for each lower solution x ∈ C and each upper solution x ∈ C of (20).

Proof. See [KS01].
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In order to apply Lemma 36 to our situation, we choose B = C([0, T ],R2) and
C = C([0, T ],R2

≥0). Then C is a normal. The operator P = Λ is increasing and
completely continuous, and p = q belongs to C. So we only have to find a function
w∗ in the interior of C with

Λw∗ ≤C εw
∗ with some ε ∈ [0, 1[ . (22)

Further we can estimate the solutions v of (18) by solutions w̄ ∈ C of

Λw̄ + q ≤C w̄ . (23)

Lemma 37. Let t∗ ≥ 0 be fixed with

ψ∗ := lim
t→t∗

ψ(t) <∞ , ψ(t) > ψ∗ for t < t∗ . (24)

Further let

k9 ≥ δ
∫ t∗

0

ψ(r)e−δr dr + ψ∗ lim
t→t∗

e−δt for all δ ∈ ]0, β2 − β1[ . (25)

Assume that there are positive numbers ρ1 < ρ2 with

G(ρ1) = G(ρ2) = 0 , G(ρ)
∣∣
[ρ1,ρ2]

�= 0 (26)

and

k1k2ρ1 < k−1
9 ψ∗ρ2 (27)

where G : R>0 → R is defined by

G(ρ) := β2 − β1 − k3γ1(1, ρ)− k4k9ρ−1γ2(1, ρ) .

Then there are positive numbers η1 < η2 with

ηi = β1 + k3γ1(1, ρi) = β2 − k4k9ρ−1
i γ2(1, ρi) ,

and the cone invariance and squeezing property hold with

η := η2 , L ∈ ]k1ρ1, k−1
2 k−1

9 ψ∗ρ2[ ,

K1 :=
k2k9

ρ2ψ∗ − k2k9L
, K2 := ρ2K1

and

L̃(t) = k1
(ρ2 − ρ̃)ρ1e−η1t + (ρ̃− ρ1)ρ2e−η2t

(ρ2 − ρ̃)e−η1t + (ρ̃− ρ1)e−η2t
.

with some ρ̃ ∈ ] max{ρ1, k2k9ψ−1
∗ L}, ρ2[.
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Remark 38. Because of limρ→0G(ρ) = limρ→∞G(ρ) = −∞, the existence of ρ∗ >
0 with G(ρ∗) > 0 implies the existence of positive numbers ρ1 < ρ2 with (26)
G(ρ1) = G(ρ2) = 0 and ρ1 < ρ∗ < ρ2. Since G(ρ1) = 0 and ρ1 < ρ∗ imply

ρ1 <
k4k9ρ

−1
∗ γ2(1, ρ∗)

β2 − β1 − k3γ1(1, ρ∗)
,

the inequality (27) holds if

β2 − β1 > k3γ1(1, ρ∗) +
k1k2k4k

2
9

ψ∗ρ∗
γ2(1, ρ∗) . (28)

Since (28) implies G(ρ∗) > 0, condition (26) can be replaced by (28) for some
ρ∗ > 0.

Proof. (of Theorem 42) We show that the two-parameter semiflow µ generated
by (11) satisfies the assumptions of Theorem 22. By Lemma 39 or Lemma 40 it
remains to show that the cone invariance and squeezing property are satisfied.

Step 1: Determining of Solutions of (22) and (23)
In order to find a solution w∗ of (22), first we look for w ∈ C in the form

w(t) = e−ηt(1, ρ) (29)

with ρ > 0 and satisfying

w1(t) ≥ (Λw)1 (t) + c1e−β1(t−T ) (30)

and
w2(t) ≥ (Λw)2 (t) + (c2ρ− k2L)e−β2t (31)

for t ∈ [0, T ] with suitable positive c1 and c2.
If we assume η > β1 and

η ≥ β1 + k3γ1(1, ρ) (32)

then, because of

eηt (Λw)1 (t) = k3γ1(1, ρ)
∫ T

t

e(η−β1)(t−r) dr

=
k3γ1(1, ρ)
η − β1

(
1− e(η−β1)(t−T )

)
,

we may choose

c1 = c1(ρ, η) :=
k3γ1(1, ρ)
η − β1

e−ηT (33)

in order to satisfy (30). Remains to satisfy (31).
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Inserting (29) in (31) and dividing by ρe−ηt, we have to satisfy

1 ≥ H(t, ρ, η) (34)

for t ∈ [0, T ] where H : [0,∞[×R× R → R is defined by

H(t, ρ, η) :=
γ2(1, ρ)
ρ

k4

∫ t

0

ψ(r)e−(β2−η)r dr + c2e−(β2−η)t .

We choose

c2 = c2(ρ, η) :=
γ2(1, ρ)
(β2 − η)ρ

k4ψ∗ .

Because of

D1H(t, ρ, η) =
(
−(β2 − η)c2 +

γ2(1, ρ)
ρ

k4ψ(t)
)
e−(β2−η)t

and because of the monotonicity of ψ, the function H(·, ρ, η) is maximized at t∗.
Hence we have

H(t, ρ, η) ≤ H(t∗, ρ, η)

=
γ2(1, ρ)
ρ

k4

(∫ t∗

0

ψ(r)e−(β2−η)rdr + (β2 − η)−1ψ∗e−(β2−η)t∗
)

for all t ≥ 0. Because of (25), inequality (34) is satisfied if

γ2(1, ρ)
ρ

k4k9 ≤ β2 − η . (35)

Combining (32) with (35), we find

β1 + k3γ1(1, ρ) ≤ η ≤ β2 − k4k9ρ−1γ2(1, ρ) (36)

as a sufficient condition for (30) and (31).
By assumption there are positive numbers ρ1 < ρ2 with (26) and (27). Let

ηi := β1 + k3γ1(1, ρi) = β2 − k4k9ρ−1
i γ2(1, ρi) .

Then (η1, ρ1) and (η2, ρ2) solve (36).
Moreover, η2 > η1. To show this, we note that η2 ≥ η1 by the monotonicity of

γ1. Assuming η1 = η2 we find γ1(1, ρ1) = γ1(1, ρ2) and γ2(ρ−1
1 , 1) = γ2(ρ−1

2 , 1). By
the convexity of the γ1- and γ2-balls we had γ1(1, ρ) = γ1(1, ρ1) and γ2(ρ−1, 1) =
γ2(ρ−1

1 , 1) for ρ ∈ [ρ1, ρ2]. This would imply the constance of G on [ρ1, ρ2] in
contradiction to (26).

Because of (27) we can choose

L ∈ ]k1ρ1, k−1
2 k−1

9 ψ∗ρ2[ . (37)
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Now we define wi ∈ C, i = 1, 2, by

wi(t) := e−ηit(1, ρi) . (38)

Then

w1
i (t) ≥ (Λwi)

1 (t) +
k3γ1(1, ρ)
η − β1

e−ηT e−β1(t−T )

and
w2
i (t) ≥ (Λwi)

2 (t) +
(
ρik

−1
9 ψ∗ − k2L

)
e−β2t

on [0, T ] because of

c1(ρi, ηi) =
k3γ1(1, ρi)
ηi − β1

= 1 , c2(ρi, ηi) =
γ2(1, ρi)k4ψ∗
(β2 − ηi)ρi

= k−1
9 ψ∗ .

Because of (37) we have
ρ2k

−1
9 ψ∗ > k2L (39)

and inequality (22) holds for w∗ := w2.
Let now C1 ∈ [0, 1], C2 > 0 satisfy

C2

(
C1e−η1T + (1− C1)e−η2T

)
≥ k1r1 ,

C2

(
C1ρ1k

−1
9 ψ∗ + (1− C1)ρ2k−1

9 ψ∗ − k2L
)
≥ k2r2 . (40)

Then
w̄ := C2 (C1w1 + (1 − C1)w2)

solves
Λw̄ + q ≤C w̄ ,

and Lemma 36 implies
v ≤C w̄

for each solution v ∈ C of (18).

Step 2: Verification of the Cone Invariance Property
Because of (39) we can fix

ρ̃ ∈ ] max{ρ1, k2k9ψ−1
∗ L}, ρ2[ .

Let r2 = 0 and r1 ≥ 0. Then (40) is satisfied with

C1 :=
ρ2 − ρ̃
ρ2 − ρ1

, C2 :=
k1r1

C1e−η1T + (1− C1)e−η2T
.

Thus we find

v2(t) ≤ w̄2(t) = C2

(
C1w

2
1(t) + (1 − C1)w2

2(t)
)
= L̄(ρ̃, t)r1



Inertial Manifolds for Nonautonomous Dynamical Systems 249

for t ∈ [0, T ] with

L̄(ρ̃, t) = k1
(ρ2 − ρ̃)ρ1e−η1t + (ρ̃− ρ1)ρ2e−η2t

(ρ2 − ρ̃)e−η1T + (ρ̃− ρ1)e−η2T
.

Especially we have
v2(T ) ≤ L̄(ρ̃, T )r1 .

The inequalities η2 > η1 > β1 imply

L̄(ρ̃, T )→ k1ρ1 as T →∞ .

Hence there are T0 ≥ 0 and L ≥ 0 with (17), if the additional inequality

k1ρ1 < L

holds, which trivially follows from (37).
By Lemma 33, the cone invariance property of µ as required in Theorem 30 is

verified with L̃(t) := L(ρ̃, t).

Step 3: Verification of the Squeezing Property
Now let r1 = 0 and r2 ≥ 0. Then we may choose

C1 := 0 , C2 :=
k2k9r2

ρ2ψ∗ − k2k9L

in order to satisfy (40). Thus we find

v(t) ≤ k2r2
ρ2ψ∗ − k2k9L

e−η2t(1, ρ2) for t ∈ [0, T ] .

Hence (19) holds with

η := η2 , K1 :=
k2k9

ρ2ψ∗ − k2k9L
, K2 := ρ2K1

and L satisfying (37). By Lemma 34, the squeezing property of µ as required in
Theorem 30 is verified.

Lemma 39. Let f be globally bounded. Then two-parameter flow µ possesses the
boundedness property and the coercivity property.

Proof. First we verify the boundedness property: By the boundedness of f there
is a number F ≥ 0 with

‖f(x)‖Z ≤ F for x ∈ X .

Thus, for τ ∈ R, t ≥ τ , x ∈ X ,

π2(t)µ(t, τ, x) = Φ(t, τ)π2(τ)x +
∫ t

τ

Φ(t, r)π2(r)f(r, µ(r, τ, x)) dr
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and, by the exponential dichotomy conditions (13),

‖π2(t)µ(t, τ, x)‖X ≤ ‖Φ(t, τ)π2(τ)‖L(X ,X )‖π2(τ)x‖X

+
∫ t

τ

‖Φ(t, r)π2(r)‖L(Z,X )‖f(r, µ(r, τ, x))‖X dr

≤ k5e−β2(t−τ)‖π2(τ)x‖X + Fk6

∫ t

τ

ψ(t− r)e−β2(t−r) dr

= k5e−β2(t−τ)‖π2(τ)x‖X + Fk6

∫ t−τ

0

ψ(r)e−β2(r) dr

≤ k5e−β2(t−τ)‖π2(τ)x‖X + Fk6

∫ ∞

0

ψ(r)e−β2(r) dr .

Thus, for any t, τ with t ≥ τ and any M1 ≥ 0 there is an M2 ≥ 0 such that
for x ∈ X with ‖π2(τ)x‖X ≤ M1 we have ‖π2(t)µ(t, τ, x)‖X ≤ M2, i.e. the two-
parameter flow possesses the boundedness property of µ as required in Theorem
22.

Now we verify the coercivity property: For τ ∈ R, t ∈ [τ, τ + T ], x ∈ X , we
have

π1(t)µ(t, τ, x) = Φ(t, τ + T )π1(τ + T )µ(τ + T, τ, x)

+
∫ t

τ+T

Φ(t, r)π1(r)f(r, µ(r, τ, x)) dr

and hence

π1(τ)x = Φ(τ, τ + T )π1(τ + T )µ(τ + T, τ, x)

+
∫ τ

τ+T

Φ(τ, r)π1(r)f(r, µ(r, τ, x)) dr .

The exponential dichotomy conditions (13) imply

‖π1(τ)x‖X ≤ ‖Φ(τ, τ + T )π1(τ + T )‖L(X ,X )‖π1(τ + T )µ(τ + T, τ, x)‖X

+ F

∫ τ+T

τ

‖Φ(τ, r)π1(r)‖L(Z,X ) dr

≤ k5eβ1T ‖π1(τ + T )µ(τ + T, τ, x)‖X + Fk6

∫ τ+T

τ

e−β1(τ−r) dr

= k5eβ1T ‖π1(τ + T )µ(τ + T, τ, x)‖X +
Fk6
β1

(eβ1T − 1) .

Hence

‖π1(τ + T )µ(τ + T, τ, x)‖X ≥
1
k5
‖π1(τ)x‖X −

Fk6
β1k5

(1− e−β1T )

for T ≥ 0, τ ∈ R, x ∈ X which shows the coercivity property of the two-parameter
flow µ as required in Theorem 22.
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Lemma 40. Let the cone invariance property be satisfied with a function L̃ which
is bounded by L̂. Let (I(τ))τ∈R be an invariant set which is uniformly bounded in
τ . Then the two-parameter flow µ possesses the strong coercivity property with
respect to CL and I with M6 < η2.

Proof. By the uniform boundedness of I there is a number M7 > 0 with

‖π1(t)x‖Y ≤M7 , ‖π2(t)x‖Y ≤M7 for all t ∈ R , x ∈ I(t) .

Let τ ∈ R and x ∈ I(τ)+CL. The forward invariance of I and the cone invariance
property imply

‖π2(t)µ(t, τ, x)‖Y ≤M7 + L̃(t− τ) (M7 + ‖π1(t)µ(t, τ, x)‖Y) for t > τ .

Let x1, x2 ∈ X with x1 − x2 ∈ CL and x2 ∈ I(τ). Let µ∆(t) := µ(t, τ, x1) −
µ(t, τ, x2). Because of

π1(t)µ(t, τ, xi) = Φ(t, τ + T )π1(τ + T )µ(τ + T, τ, xi)

+
∫ t

τ+T

Φ(t, r)π1(r)f(r, µ(r, τ, xi)) dr ,

the exponential dichotomy conditions (13) imply

‖π1(t)µ∆(t)‖Y ≤ ‖Φ(t, τ + T )π1(τ + T )µ∆(τ + T )‖Y

+
∫ τ+T

t

‖Φ(t, r)π1(r)[f(r, µ(r, τ, x1))− f(r, µ(r, τ, x2))]‖Y dr

≤ k1e−β1(t−τ−T )‖π1(τ + T )µ∆(τ + T )‖Y

+ k3

∫ τ+T

t

e−β1(t−r)γ1(‖π1(r)µ∆(r)‖Y , ‖π2(r)µ∆(r)‖Y) dr

≤ k1e−β1(t−τ−T )‖π1(τ + T )µ(τ + T, τ, x)‖Y

+ k3

∫ τ+T

t

e−β1(t−r)γ1(1, L̃(r − τ))‖π1(r)µ∆(r)‖Y dr .

Setting

u(s) = ‖π1(τ + T − s)µ∆(τ + T − s)‖Ye−β1s for s ∈ [0, T ] ,

we find the Gronwall inequality

u(s) ≤ k1u(0) + k3

∫ s

0

γ1(1, L̃(T − σ))u(σ) dσ for s ∈ [0, T ] .

Hence

u(s) ≤ k1u(0)
(
1 + k3

∫ s

0

ek3
∫
s
τ
γ1(1,L̃(T−σ)) dσγ1(1, L̃(T − τ)) dτ

)
= k1u(0)ek3

∫
s
0 γ1(1,L̃(T−σ)) dσ
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and therefore

‖π1(τ)µ∆(τ)‖Y ≤M9(T )‖π1(τ + T )µ∆(τ + T )‖Y (41)

with

M̃6(T ) := β1T + k3

∫ T

0

γ1(1, L̃(T − σ)) dσ , M9(T ) := k1eM̃6(T )

Let ρ∗ ∈]k1ρ1, ρ2[ be a number with γ1(1, ρ∗) < γ1(1, ρ2). To show the existence
of ρ∗, we note that η2 = β1 + γ1(1, ρ2) > η1 = β1 + γ1(1, ρ1). Assuming γ1(1, ρ) =
γ1(1, ρ2) for ρ ∈ [k1ρ1, ρ2], the convexity of the γ1-balls would imply γ1(1, ρ) =
γ1(1, ρ2) for |ρ| ≤ ρ2 and hence γ1(1, ρ1) = γ1(1, ρ2) in contradiction to η1 < η2.
Therefore γ1(1, k1ρ1) < γ1(1, ρ2) and by the continuity of γ1 the existence of k1
follows.

Since L̃ is monotonously decreasing with L̃(0) = k1ρ̃ and limt→∞ L̃(t) = k1ρ1 <
ρ∗ < ρ2, there is a T ∗ ≥ 0 with L̃(t) ≤ ρ∗ for t ≥ T ∗. Thus

1
T
M̃6(T ) = β1 + k3

1
T

∫ T

0

γ1(1, L̃(T − σ)) dσ

≤ β1 + k3

(
T ∗

T
γ1(1, k1ρ̃) + γ1(1, ρ∗)

)
=M6 +

1
T
M̃5

for T > 0 where

M6 := β1 + k3γ1(1, ρ∗) < β1 + k3γ1(1, ρ2) = η2

and
M̃5 := T ∗γ1(1, k1ρ̃) .

Hence
‖π1(τ)µ∆(τ)‖Y ≤ k1eM̃5+M6T ‖π1(τ + T )µ∆(τ + T )‖Y .

Thus

‖π1(τ)µ(τ, τ, x1)‖Y
≤ ‖π1(τ)µ∆(τ)‖Y + ‖π1(τ)µ(τ, τ, x2)‖Y
≤M7 + k1eM̃5+M6T ‖π1(τ + T )µ∆(τ + T )‖Y
≤M7 + k1eM̃5+M6T ‖π1(τ + T )µ(τ + T, τ, x1)‖Y

+ k1eM̃5+M6T ‖π1(τ + T )µ(τ + T, τ, x2)‖Y
≤M7 + k1eM̃5+M6T (M7 + ‖π1(τ + T )µ(τ + T, τ, x1)‖Y)
≤M5eM6T (M7 + ‖π1(τ + T )µ(τ + T, τ, x1)‖Y)

with
M5 := (1 + k1)eM̃5 .
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Lemma 41. The two-parameter flow µ possesses the smoothing Lipschitz prop-
erty.

Proof. Let x, y ∈ X , τ ∈ R and let µ∆(t) = µ(t, τ, x) − µ(t, τ, y). By assumption
f(t, ·) is global Lipschitz from X to Z with some constant L̂ independent of t. The
exponential dichotomy conditions imply the generalized Gronwall inequality

‖µ∆(t)‖X ≤ ‖Φ(t, τ)[x − y]‖X +
∫ t

τ

‖Φ(t, s)[f(s, µ(s, τ, x))− f(s, µ(s, τ, x))]‖X ds

≤ ‖Φ(t, τ)‖L(Y,X )‖x− y‖Y + L̂

∫ t

τ

‖Φ(t, s)‖L(Z,X )‖µ∆(s)‖X ds

≤ k7(t− τ)−γeβ0(t−τ)‖x− y‖Y + L̂k8

∫ t

τ

(t− s)−αeβ0(t−s)‖µ∆(s)‖X ds

for ‖µ∆(·)‖X . As proved for example in [Hen81], there is a function M8 : ]0,∞[→
]0,∞[ with

‖µ∆(t)‖X ≤M8(t− τ)‖x − y‖Y for t > τ .

Inequality (10) is shown in the proof of the previous Lemma as inequality (41).

Now we are in a position to state the following theorem as a direct consequence
of Theorem 22 and the previous lemmata:

Theorem 42. Let the assumptions of Lemma 37 and the assumptions of Lemma
39 or Lemma 40 be satisfied. Then the claim of Theorem 22 holds for the two-
parameter semi-flow µ generated by (11) with η, L, K1 and K2 as given in Lemma
37.

3.3 Indefinite Quadratic Forms

Let H = Z be a Hilbert space equipped with norm | · |, and let A be a densely
defined linear operator on H which is selfadjoint, positive and which has compact
resolvent. We consider a nonautonomous parabolic evolution equation

ẋ+Ax = f(t, x) (42)

where the nonlinear part f : R×X → H satisfies the following assumptions:
• The Hilbert space X = D(Aα) with norm ‖u‖X := |u|α := |Aαu| is the

domain of a power Aα of A with some α ∈ [0, 1[.
• f(t, x) is locally Hölder continuous in t and global Lipschitz continuous in x.
Then there are maximally defined (classical) solutions

µ(·, τ, ξ) ∈ C([τ,∞[,X ) ∩ C1(]τ,∞[,H)

of (42) with initial condition x(τ) = ξ, see [Hen81], [Mik98], and (42) generates a
two-parameter semi-flow µ on X .
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Let λ1 ≤ λ2 ≤ · · · denote the eigenvalues of A counted with their multiplicity
and let e1, e2, . . . denote the corresponding eigenvectors of A.

We fixN ∈ N. Let π1 be the orthogonal projector fromH onto span{e1, . . . , eN}
and let π2 := idH − π1.

For a fixed Banach space Y with X ↪→ Y ↪→ Z, we introduce the quadratic
forms Qρ : X → R

Qρ(x) = ‖π2x‖2Y − ρ2‖π1x‖2Y for x ∈ X , ρ > 0.

Our goal is to use inequalities

Qρ(µ(t, τ, x) − µ(t, τ, y)) ≤ e−2Λ(ρ)(t−τ)Qρ(x− y) (43)

for t ≥ τ , x, y ∈ X and suitable ρ > 0 in order to show the cone invariance and
squeezing property.

Lemma 43. Under the general assumption given above, let there exist ρ1 < ρ2, a
function Λ : [ρ1, ρ2]→ R and a number L0 ∈ ]ρ1, ρ2] with

Λ(L0) > 0

and (43) for ρ ∈ [ρ1, ρ2], t ≥ τ , x, y ∈ X . Then the two-parameter semi-flow
µ possesses the cone invariance property for all L ∈ [ρ1, ρ2] and the squeezing
property with the parameters

L = ρ1 , η = Λ(L0) , K1 =
ρ2L0√

ρ22 − L2
0

√
L2
0 − ρ21

, K2 = ρ1K1 .

Proof. 1. Let ρ ∈ [ρ1, ρ2] and ‖π2[x − y]‖Y ≤ ρ‖π1[x − y]‖Y . Then Qρ(x− y) ≤ 0
and hence by assumption Qρ(µ(t, τ, x)− µ(t, τ, y)) ≤ 0, i.e.,

‖π2[µ(t, τ, x)− µ(t, τ, y)]‖Y ≤ ρ‖π1[µ(t, τ, x)− µ(t, τ, y)]‖Y for all t ≥ τ , (44)

i.e., the cone invariance property is satisfied in Y for any parameter L = ρ ∈
[ρ1, ρ2].

2. Let L = ρ1 and let τ ∈ R, T ≥ 0, and x, y, z ∈ X with π1µ(τ + T, τ, x) =
π1µ(τ + T, τ, y) and ‖π2[x − z]‖Y ≤ L‖π1[x − y]‖Y . Assuming Qρ(µ(t, τ, x) −
µ(t, τ, y)) < 0 for some ρ ∈ [ρ1, ρ2], t ∈ [τ, τ + T ], we get a contradiction to

Qρ(µ(t, τ, x) − µ(t, τ, y)) = ‖π2[µ(t, τ, x)− µ(t, τ, y)]‖2Y ≥ 0 .

Hence,

0 ≤ Qρ(µ(t, τ, x)−µ(t, τ, y)) ≤ e−2Λ(ρ)(t−τ)Qρ(x− y) for all t ∈ [τ, τ +T ] . (45)

Using this inequality and setting µ∆(t) := µ(t, τ, x) − µ(t, τ, y), we find

Qρ(µ∆(t)) = ‖π2µ∆(t)‖2Y − ρ2‖π1µ∆(t)‖2Y
= (1− ρ2ρ−2

2 )‖π2µ∆(t)‖2Y + ρ2ρ−2
2

(
‖π2µ∆(t)‖2Y − ρ22‖π1µ∆(t)‖2Y

)
≥ (1− ρ2ρ−2

2 )‖π2µ∆(t)‖2Y ,
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i.e.,

‖π2[µ(t, τ, x)− µ(t, τ, y)]‖2Y ≤
ρ22

ρ22 − ρ2
e−2Λ(ρ)tQρ(x− y)ρ ∈ [ρ1, ρ2[, t ∈ [τ, τ + T ] .

for all ρ ∈ [ρ1, ρ2[, t ∈ [τ, τ + T ]. With the first inequality in (45) and

Qρ(x− y′) = ‖π2[x− y]‖2Y − ρ2‖π1[x− y]‖2Y
≤ (‖π2[y − z]‖Y + ‖π2[x− z]‖Y)2 − ρ2‖π1[x− y]‖2Y
≤ (‖π2[y − z]‖Y + L‖π1[x− y]‖)2 − ρ2‖π1[x− y]‖2Y
≤ (1 + ε−1)‖π2[y − z]‖2Y +

(
(1 + ε)L2 − ρ2

)
‖π1[x− y]‖2Y

=
ρ2

ρ2 − L2
‖π2[y − z]‖2Y

for ε = ρ2L−2 − 1. Thus, for ρ = L0, we get

‖πi[µ(t, τ, x)− µ(t, τ, y)]‖Y ≤ Kie−tη‖π2[y − z]‖Y for all t ∈ [τ, τ + T ] ,

i.e., the modified squeezing property is satisfied.

Theorem 44. Let the assumptions of Lemma 43 be satisfied. Moreover, we as-
sume that

• f is globally bounded
or

• there is an bounded invariant set I.
Then the claim of Theorem 22 holds for the two-parameter semi-flow µ gener-

ated by (11) with η, L, K1 and K2 as given in Lemma 43.

Proof. We only have to note that the exponential dichotomy conditions (13), (14)
and the inequalities (15) can be satisfied for Φ(t, τ) = e−A(t−τ).

Remark 45. An inequality of the form (43) is used in [Rom94] for the special case
Y = D(Aα/2). Assuming the Lipschitz inequality

|f(x)− f(y)| ≤ ^|x− y|α x, y ∈ X = D(Aα) (46)

and the spectral gap condition

λN+1 − λN > ^(λαN + λαN+1) , (47)

A.V. Romanov [Rom94] shows that (43) holds for ρ ∈ [h, h−1], Λ(ρ) = λN+1 −
^λαN+1 and with h < 1 satisfying

λN+1 − λN > ^(λαN +
1
2
(h2 + h−2)λαN+1) .

Thus our Theorem 44 allows to ensure the existence of inertial manifolds under
the sharp spectral gap condition (47) for the Lipschitz inequality (46).
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In the following two Lemmata we verify the assumption of Lemma 43. For sim-
plicity we restrict us to Y = H and to Lipschitz inequalities of the type

|f(t, x)− f(t, y)| ≤ ν(x − y) (48)

for all x, y ∈ D(A), t ∈ R where

ν(x) =

(
M∑
i=1

di|x|2δi

) 1
2

with positive di, i = 1, . . . ,M , and

γ = δ1 ∈ [0,min{α, 1
2
}] , 0 ≤ δi+1 < δi for i = 1, . . . ,M − 1 .

Let

g1 :=

(
M∑
i=1

diλ
2δi
N

) 1
2

, g2 :=

(
M∑
i=1

diλ
2δi
N+1

) 1
2

We show that in this case the assumptions of Lemma 43 and hence of Theorem
44 can be satisfied if the spectral gap condition

λN+1 − λN > g1 + g2 (49)

holds.
Especially, for

|f(t, x)− f(t, y)| ≤ ^ · |x− y|γ for x, y ∈ D(A) , t ∈ R

we have the spectral gap condition

λN+1 − λN > ^(λγN+1 + λγN ) .

Let the auxiliary function p : R → R defined by

p(ρ) := (λN+1 − λN )2 ρ2 −
(
ρ2 + 1

) (
g21 + ρ2g22

)
for ρ ∈ R . (50)

Further, let
L0 :=

√
g1/g2 .

Lemma 46. Let the spectral gap condition (49) be satisfied. Then there are
uniquely determined numbers 0 < ρ1 < ρ2 with

p(ρ1) = p(ρ2) = 0 , ρ1 < L0 < ρ2 .

The function Λ : ]0,∞[→ R defined by

Λ(ρ) := λN+1 −
ρ2(1 + ρ2)g22 + g21 + ρ2g22

2L
√
1 + ρ2

√
g21 + ρ2g22

for ρ > 0 (51)

is maximized at L0 with

Λ(L0) = λN+1 − g2 > 0 . (52)
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Proof. Because of

p(L0) =
g1
g2

(
(λN+1 − λN )2 − (g1 + g2)2

)
,

the spectral gap condition (49) implies p(L0) > 0. Since p is a quadratic polynomial
in ρ2 and p(0) < 0, the existence and uniqueness of zeroes ρ1, ρ2 of p in ]0,∞[
follows. Thus p(ρ) > 0 for ρ ∈ ]ρ1, ρ2[ and L0 ∈ ]ρ1, ρ2[.

We have

Λ(ρ) = λN+1 −
1
2
g2
(
H(ρ) +H(ρ)−1

)
with

H(ρ) := g2

(
1 + ρ2

ρ−2g21 + g22

) 1
2

,

such that Λ has a global maximum on ]0,∞[ at ρ with H(ρ) = 1, i.e., at ρ = L0.
Since λN > 0, the spectral gap condition (49), we have (52).

Lemma 47. Let Y = H and let (48) and (49) be satisfied. Then

Qρ(µ(t, τ, x) − µ(t, τ, y)) ≤ Qρ(x− y)e−2Λ(ρ)(t−τ)

for all x, y ∈ X , ρ ∈ [ρ1, ρ2] and τ ≤ t.

Proof. Let ρ ∈ [ρ1, ρ2], τ < t, x, y ∈ X be fixed. For shortness let µ∆ := µ(t, τ, x)−
µ(t, τ, y), f∆ := f(t, µ(t, τ, x)− f(t, µ(t, τ, y)).

We have

1
2
d

dt
Qρ(µ∆) = G

〈
−Aµ∆ + f∆, π2µ∆ − ρ2π1µ∆

〉
= −〈Aµ∆, π2µ∆〉+ ρ2 〈Aµ∆, π1µ∆〉+ G

〈
f∆, π2µ∆ − ρ2π1µ∆

〉
and

G
〈
f∆, π2µ∆ − ρ2π1µ∆

〉
≤ ν(µ∆)|π2µ∆ − ρ2π1µ∆|
≤ ε

2ν(µ∆)
2 + 1

2ε |π2µ∆ − ρ2π1µ∆|2
≤ ε

2ν(π1µ∆)
2 + ε

2ν(π2µ∆)
2 + 1

2ε |π2µ∆|2 +
1
2ερ

4|π1µ∆|2 .

Note that

〈Aµ∆, π1µ∆〉 ≤ λN |π1µ∆|2 , −〈Aµ∆, π2µ∆〉 ≤ −λ1−2γ
N+1 |π2µ∆|2γ

and

ν(π1µ∆) ≤ g1|π1µ∆| , ν(π2µ∆) ≤ g2λ
−γ
N+1|π2µ∆|γ .
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With ε > 0, we estimate

1
2
d

dt
Qρ(µ∆) ≤ −λ1−2γ

N+1 |π2µ∆|2γ + ρ2λN |π1µ∆|2

+
ε

2
ν(π1µ∆)2 +

ε

2
ν(π2µ∆)2 +

1
2ε
|π2µ∆|2 +

1
2ε
ρ4|π1µ∆|2

≤ |π1µ∆|2
(
ρ2λN +

1
2ε
ρ4 +

ε

2
g21

)
1
2ε
|π2µ∆|2 + |π2µ∆|2γ

(
−λ1−2γ

N+1 +
ε

2
g22λ

−2γ
N+1

)
.

Under the assumption

λN+1 >
ε

2
g22 , (53)

we find

1
2
d

dt
Qρ(µ∆) ≤ −ΛQρ(µ∆) + |π1µ∆|2

(
−Λρ2 + ρ2λN +

1
2ε
ρ4 +

ε

2
g21

)
+ |π2µ∆|2γ

(
Λ+

1
2ε
− λN+1 +

ε

2
g22

)
≤ −ΛQρ(µ∆) (54)

if Λ satisfies

λN +
1
2ε
ρ2 +

ε

2
g21ρ

−2 ≤ Λ ≤ λN+1 −
1
2ε
− ε

2
g22 .

This inequality is solvable with respect to Λ if and only if

λN+1 − λN ≥
1
2ε

(1 + ρ2) +
ε

2
(g21ρ

−2 + g22) . (55)

The right-hand side is minimized at

ε :=
(

1 + ρ2

ρ−2g21 + g22

) 1
2

(56)

with the value
(1 + ρ2)

1
2 (g21ρ

−2 + g22)
1
2

such that we obtain the sufficient and necessary condition

λN+1 − λN ≥ (1 + ρ2)
1
2 (g21ρ

−2 + g22)
1
2 . (57)

By definition of p and by Lemma 46, this inequality holds for ρ ∈ [ρ1, ρ2]. So

Λ = λN+1 −
1
2ε
− ε

2
g22

= λN+1 −
1
2

(
g21ρ

−2 + g22
1 + ρ2

) 1
2

− 1
2

(
1 + ρ2

g21ρ
−2 + g22

) 1
2

g22

= Λ(ρ)
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solves (55) with ε given by (56).
Remains to show (53) with (56), i.e., we have to show√

g21 + ρ2g22λN+1 >
1
2
ρ
√
1 + ρ2g22 . (58)

Indeed, (58) holds, since the inequalities (57) and λN+1 > λN > 0 imply

ρ
√
1 + ρ2g22 ≤ (λN+1 − λN )ρ2g22(g

2
1 + ρ2g22)

− 1
2

≤ λN+1(g21 + ρ2g22)(g
2
1 + ρ2g22)

− 1
2

= λN+1

√
g21 + ρ2g22 .

Summarizing we have that Λ = Λ(ρ) satisfies (54). Therefore,

d

dt
Qρ(µ(t, τ, x) − µ(t, τ, y)) ≤ −2Λ(ρ)Qρ(x− y)

for all t > τ , x, y ∈ X , ρ ∈ [ρ1, ρ2] such that the claim of the lemma follows.

Corollary 48. Under the general assumptions of this section let f satisfy the
Lipschitz inequality (48) with some γ ∈ [0,min{α, 12}] such that the spectral gap
condition (49) holds. Moreover, we assume that

• f is globally bounded
or

• there is an bounded invariant set I.
Then the claim of Theorem 22 holds for the two-parameter semi-flow µ gener-

ated by (11) with η, L, K1 and K2 as given in Lemma 43.

4 Conclusion

Exponential dichotomy conditions of the form (13) are used, for example, in
[Hen81], [Tem97], [BdMCR98], [LL99], [CS01]. There k3 = βα1 k1, k4 = βα2 with
some α ∈ [0, 1[ depending on the spaces X and Z, and ψ(t) = β−α2 max{t−α, 1},
ψ(t) = β−α2 t−α + 1, or ψ(t) = max{ααβ−α2 t−α, 1} where 00 := 1. If A is a time-
independent sectorial operator, then usually X is the domain D((A+ a)α) of the
power (A + a)α of A + a with some α ∈ [0, 1[ and some a ∈ R. If X = Z then we
may choose α = 0 and ψ = 1.

In the special case that A is a time-independent, selfadjoint positive linear
operator with compact resolvent and dense domain D(A) on the Hilbert space
Z, usually one uses X = D(Aα) with some α ∈ [0, 1[. Let π1 be the orthogonal
projector from Z onto the linear subspace spanned by the N eigenvectors of A
corresponding to the first N eigenvalues λ1 ≤ · · · ≤ λN (counted with their mul-
tiplicity). Then we may choose β1 = λN , β2 = λN+1, k1 = k2 = 1, k3 = βα1 ,
k4 = βα2 , ψ(t) := max{ααβ−α2 t−α, 1}, see for example [FST88, Lemma 3.1].
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In [LL99] (and with X = Z), a Lipschitz inequality of the form

‖πi(t)[f(t, x) − f(t, y)]‖X ≤ ^imax{‖π1(t)[x − y]‖X , ‖π2(t)[x − y]‖X}

is utilized. This special form of a Lipschitz inequality is contained in our Lipschitz
assumption with γi(w) = ^i|w|∞ and | · |∞ as the maximum norm in R2. The
standard Lipschitz inequality

‖f(t, x)− f(t, y)‖Z ≤ ^‖x− y‖X

in a Hilbert space Z and with orthogonal projectors π1(t) leads to (16) with
γi(w) = ^|w|2 or γi(w) = ^|w|1, where | · |1 denotes the sum norm and | · |2 denotes
the euclidean norm in R2.

In order to compare known results with ours we verify the assumptions of The-
orem 42 for different forms of Lipschitz estimates for f and for concrete functions
ψ in the exponential dichotomy property.

Corollary 49. Under the general assumptions in Sec. 3.2, let f satisfy (16) with
weighted maximum norms

γi(w) = ^imax{|w1|, |w2|} , ^i > 0 for w ∈ R2 . (59)

Let t∗, ψ∗ and k9 with the properties as in Theorem 42. Then condition (28) and
hence the claim of Theorem 42 hold if

β2 − β1 >
k3^1 + k4k9^2

2
+

√
(k3^1 − k4k9^2)2

4
+
k1k2k3k4k29^1^2

ψ∗
. (60)

Proof. Calculating the zeroes of G with G(ρ) = β2 − β1 − k3^1max{1, ρ} −
k4k9^2ρ

−1max{1, ρ}, we find (60) as sufficient and necessary condition for (26),
(27).

Latushkin and Layton [LL99] consider −A as generator of a strongly continuous
semigroup on the Banach space X = Z. Let X be the direct sum of two subspace X1

and X2 and let πi the projector from X onto Xi. Assuming exponential dichotomy
conditions (13) with k1 = k2 = 1 (and k3 = k4 = 1, ψ = 1 because of X = Z) and
f(0) = 0 and

‖πi[f(x)− f(y)]‖X ≤ ^imax{‖π1[x− y]‖X , ‖π2[x− y]‖X}

for the time-independent nonlinearity f , they found

β2 − β1 > ^1 + ^2 (61)

as optimal spectral gap condition. They extended this result to (−A(t)) as a family
of linear operators on the Banach space X = Z generating a strongly continuous
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semiflow, see [LL99] too. Again, assuming exponential dichotomy conditions (13)
with k1 = k2 = k3 = k4 = 1, ψ = 1, and the Lipschitz estimate

‖πi(t)[f(t, x) − f(t, y)]‖X ≤ ^imax{‖π1(t)[x − y]‖X , ‖π2(t)[x − y]‖X}

and f(t, 0) = 0 for f , they found the spectral gap condition (61) for nonautonomous
inertial manifolds.

Since X = Z, we have k3 = k1, k4 = k2, ψ = 1. Thus we have to choose t∗ = 0
and find k9 = ψ∗ = 1. Our condition (60) reduces to

β2 − β1 > k1^1 + k2^2 ,

which in the special case of k1 = k2 = 1 reduces to the optimal spectral gap
condition (61) found by Y. Latushkin and B. Layton, [LL99].

Corollary 50. Under the general assumptions in Sec. 3.2, let f satisfy (16) with
weighted sum norms

γi(w) = ^i1|w1|+ ^i2|w2| , ^i1, ^i2 > 0 for w ∈ R2. (62)

Let t∗, ψ∗ and k9 with the properties as in Theorem 42. Then condition (28) and
hence the claim of Theorem 42 hold if

β2 − β1 > k3^11 + k4k9^22 +
k1k2k9 + ψ∗√

k1k2ψ∗

√
^12^21k3k4 . (63)

Proof. Calculating the zeroes of G with G(ρ) = β2 − β1 − k3^11 − k3^12ρ −
k4k9^21ρ

−1− k4k9^22, we find (63) as a sufficient and necessary condition for (26),
(27).

First let
ψ(t) := max{ααβ−α2 t−α, 1}

as in [FST88, Lemma 3.1]. Here and in the following we set 00 := 1 in order
to continuously extend the expression for ψ to the limit case α = 0. We choose
t∗ := αβ−1

2 and hence we have ψ∗ = 1. To satisfy (25) we note that

δ

∫ t∗

0

ψ(r)e−δr dr + ψ∗ lim
t→t∗

e−δt = δαααβ−α2

∫ δαβ−1
2

0

r−αe−r dr + e−δαβ
−1
2 .

The right hand side is monotonously increasing in δ > 0. Therefore, we may satisfy
(25) for 0 < δ ≤ β2 − β1 ≤ β2 with

k10 := αα
∫ α

0

r−αe−r dr + e−α − 1 ≥ 0 , k9 := 1 +
(β2 − β1)α

βα2
k10 .

If k3 = k1β
α
1 , k4 = k2β

α
2 and ^11 = ^12 = ^21 = ^22 = ^, condition (63) reads

β2 − β1 >
(
k1β

α
1 + k2k9β

α
2 + (1 + k9k1k2)

√
βα1 β

α
2

)
^ . (64)
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Now we assume that Z is a Hilbert space, A is a time-independent, selfadjoint,
positive linear operator on Z with dense domain and compact resolvent, f is a
continuous mapping from R×X , X = D(Aα), into Z satisfying a global Lipschitz
condition ‖f(t, x) − f(t, y)‖Z ≤ ^‖x − y‖X for x, y ∈ X . Let λ1 ≤ λ2 ≤ · · ·
denote the eigenvalues of A counted with their multiplicity and let π1 be the
orthogonal projector from Z onto the N -dimensional subspace spanned by the
first N eigenvectors of A. Then (13) is satisfied with k1 = k2 = 1, β1 = λN ,
β2 = λN+1, and we find the spectral gap condition

λN+1 − λN >

((
λ
α/2
N + λ

α/2
N+1

)2
+ k10

λ
α/2
N + λ

α/2
N+1

λ
α/2
N+1

(λN+1 − λN )α
)
^ (65)

which holds if

λN+1 − λN > 2
(
λαN + λαN+1 + k10(λN+1 − λN )α

)
^ . (66)

Romanov [Rom94] showed that a spectral gap condition

λN+1 − λN > (λαN+1 + λαN )^ (67)

is sufficient for the existence of an N -dimensional (autonomous) inertial manifold.
Note that the right hand side in (66) is at most by the factor 2(1 + k10) worse
than the right hand side in the sharp condition (67), where k10 = 0 for α = 0 and
k10 ≈ 0.46 for α = 1

2 .
For α ≤ 1

2 , we may apply Corollary 48 which yields the strong spectral gap
condition (67), too. If α ∈ ]12 , 1], we refer to Remark 45, which says that our
approach also allows to get the sharp condition (67) in that case. Moreover, for
some evolution equations it usefull to distinguish the space X = D(Aα), in which
the semiflow acts, from the space D(Aγ) used in the Lipschitz inequality: One has
to choose α ∈ [0, 1[ in such a way that f is a sufficiently smooth mapping from
R × X as required for the existence theory. However it is possible to satisfy and
to require a Lipschitz inequality ‖f(x)− f(y)‖Z ≤ ν(x − y) for x, y ∈ D(A) with
γ ∈ [0,min{α, 12}[ and some norm ν on D(Aγ). Especially, for ν(x) = ^|x|D(Aγ ),
our Corollary 48 yields a spectral gap condition

λN+1 − λN > (λγN+1 + λγN )^

which is weaker than (67) if γ < α. As an concrete application we consider a
reaction-diffussion equation

ut = uξξ + F (ξ, u,∇u) , u(t, 0) = u(t, 1) = 0

with
|F (ξ, u, v)− F (ξ, u′, v′)| ≤ ^0|u− u′|+ ^1|v − v′|

in Z = L2([0, 1]) as studied by P. Brunovský and I. Teresščák, [BT91]. Here
−A is the Laplacian with Dirichlet boundary condition on [0, 1], and f(t, x)(ξ) =
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F (t, ξ, x(ξ),∇x(ξ)). For the existence theory we need α > 3
4 , but it is possible to

choose ν(x) =
√
2^0|x|+

√
2^1|x| 1

2
in order to cover the gradient in the nonlinearity.

Corollary 48 yields the spectral gap condition

λN+1 − λN >
√
2(2^0 + ^1(λ

1
2
N + λ

1
2
N+1)) ,

i.e.
(2N + 1)π2 > 2

√
2^0 +

√
2(2N + 1)π^1

which is weaker than the spectral gap condition found in [BT91].

Now let
ψ(t) = β−α2 t−α + 1

as in [Tem97]. Then t∗ =∞, ψ∗ = 1 and we may choose

k10 := Γ (1− α) , k9 := 1 + k10

to satisfy (25). In the special case ^1 = ^2 = ^, k3 = k1β
α
1 , k4 = k2β

α
2 , condition

(63) reads now

β2 − β1 >
(
k1β

α
1 + (1 + k1k2(1 + k10))

√
βα1 β

α
2 + k2(1 + k10)βα2

)
^ . (68)

For a Banach space Z, a time-independent, sectorial linear operator A on Z
with dense domain D(A), and a time-independent, continuous mapping f from
X = D(Aα) into Z satisfying a global Lipschitz condition ‖f(x) − f(y)‖Z ≤
^‖x−y‖X where X = D((A+a)α) with fixed a ∈ R, α ∈ [0, 1[ with Gσ(A)+a > 0,
and under assumption (13) with ψ(t) = β−α2 t−α + 1, Temam showed ([Tem97],
Theorem IX.2.1) that there are constants c1 and c2 independent of the Lipschitz
constant ^ and the boundedness constant ^0 of the nonlinearity f , such that the
spectral gap condition

β2 − β1 ≥ c1(^0 + ^+ ^2)(βα2 + βα1 ) , β1−α1 ≥ c2(^0 + ^) (69)

implies the existence of an autonomous inertial manifold in the autonomous case.
Note that our condition (68) is of similar form as (69) but (68) contains only

known constants and is applicable for the nonautonomous case, too. Moreover, in
contrast to (69), in our condition (68), the right hand side is linear in the Lipschitz
constant ^.

Finally let
ψ(t) = ααβ−α2 t−α + 1 .

Then we choose t∗ :=∞ and have ψ∗ = 1. Since

δ

∫ t∗

0

ψ(τ)e−δτ dτ = δβ−α2

∫ ∞

0

(αατ−α + βα2 )e
−δτ dτ

= ααδαβ−α2 Γ (1− α) + 1 ,
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for δ > 0, we may choose

k10 := ααΓ (1− α) , k9 := 1 +
(β2 − β1)α

βα2
k10 (70)

in order to satisfy (25) for δ ∈]0, β2−β1[. In the special case ^1 = ^2 = ^, k3 = k1β
α
1 ,

k4 = k2β
α
2 , condition (63) takes the form (64).

Whilst we are yet not in a position to deal with retardation or stochastic
perturbation, we try to compare our result with that one found by L. Boutet de
Monvel, I.D. Chueshov and A.V. Rezounenko in [BdMCR98] and by I.D. Chueshov,
M. Scheutzow in [CS01] for the special case of a semilinear parabolic equation
without perturbation and without retardation. There Z is a Hilbert space, A is
a time-independent, selfadjoint, positive linear operator on Z with dense domain
and compact resolvent, f is a continuous mapping from R × X , X = D(Aα),
into Z satisfying a global Lipschitz condition ‖f(t, x) − f(t, y)‖Z ≤ ^‖x − y‖X .
Let λ1 ≤ λ2 ≤ · · · denote the eigenvalues of A counted with their multiplicity
and let π1 be the orthogonal projector from Z onto the N -dimensional subspace
spanned by the first N eigenvectors of A. Chueshov and Scheutzow [CS01] found
the spectral gap condition

λN+1 − λN > 2
(
λαN + λαN+1 + ααΓ (1− α)(λN+1 − λN )α

)
^ , (71)

and Boutet de Monvel, Chueshov and Rezounenko found

λN+1 − λN ≥ 4
(
λαN + λαN+1 + ααΓ (1− α)(λN+1 − λN )α

)
^ ,

which is is little bit worse than (71).
In this situation the exponential dichotomy condition (13) is satisfied with

k1 = k2 = 1, β1 = λN , β2 = λN+1, k3 = λαN , k4 = λαN+1, and we find again
the spectral gap condition (65) but here with k10 given by (70). Obviously our
condition (65) is a little weaker than (71). Note again that Corollary 48 would
only require the spectral gap condition 67. So we have good chances to extend
our result to retarded semilinear parabolic equations and, possibly, to semilinear
parabolic equations with stochastic perturbation.

Summarizing the examples above, one can see that at least in these examples
our approach allows to get the same or weaker spectral gap conditions.
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