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Abstract. A stochastic discrete fracture network model of Darcy’s un-
derground water flow in disrupted rock massifs is introduced. Lowest or-
der Raviart–Thomas mixed-hybrid FEM discretization is chosen, and it is
properly imbedded in both the framework of mixed and mixed-hybrid FEM
for the special conditions of the flow through connected system of 2-D poly-
gons in 3-D. Model problems are tested and generation and triangulation
of fracture networks for real situations is described.
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1 Introduction

We consider a steady saturated Darcy’s law governed flow of an incompressible
fluid through a system of 2-D polygons placed in the 3-D space and connected
under certain conditions into one network. This may simulate underground water
flow through natural geological disruptions of a rock massif, fractures, e.g. for the
purposes of finding suitable nuclear waste repositories. Note that intersection of
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three or more triangles through one edge in the discretization is possible owing
to the special geometrical situation, see Fig 11. We use the lowest order Raviart-
Thomas mixed-hybrid finite element approximation, and we study its existence
and uniqueness, existence and uniqueness of appropriate weak solutions, and the
approximation error in the framework of the mixed FEM and the mixed-hybrid
FEM, see [10], [8] respectively. For technical details of the following, see [14].

The outline of the contribution is as follows: in Section 2, we state the mathe-
matical-physical formulation, in Section 3, we give appropriate function spaces,
in Section 4, we state the weak primal formulation and verify its existence and
uniqueness, which we will need in Sections 5 and 6 in order to prove the exis-
tence and uniqueness of weak and discrete solutions for the mixed/mixed hybrid
finite element methods. The theoretical estimates are confirmed by the carried
out numerical examples, see Section 7. Description of stochastic discrete fracture
networks generation and discretization for simulation of real situations is given in
Section 8.

2 Mathematical-physical Formulation

We suppose that we have

S =
{ ⋃

O∈L
αO \ ∂S

}
, (1)

where αO is an opened 2-D polygon placed in a 3-D Euclidean space; we call αO as
a fracture. We denote as L the index set of fractures, |L| is the number (finite) of
considered fractures. We suppose that all closures of these polygons are connected
into one “fracture network”, the connection is possible only through an edge, not a
point. Moreover, we require that if αi

⋂
αj �= ∅ then αi

⋂
αj ⊂ ∂αi

⋂
∂αj, i.e. the

connection is possible only through fracture boundaries (we state this requirement
in order to be able to define correct function spaces). The situation is schematically
viewed in Figure 4.

Let us have a 2-D orthogonal coordinate system in each polygon αO. We are
looking for the fracture flow velocity u (2-D vector in each αO), which is the solution
of the following problem

u = −K
(
∇p+∇z

)
in S , (2)

∇ · u = q in S , (3)

p = pD in ΛD, u · n− σ(p− pD) = uN in ΛN , (4)

where all variables are expressed in local coordinates of appropriate αO and also the
differentiation is always expressed towards these local coordinates. The equation
(2) is Darcy’s law, (3) is the mass balance equation and (4) is the expression of
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appropriate boundary conditions. The variable p denotes the modified fluid pres-
sure p (p = p

Pg ), g is the gravitational acceleration constant, ` is the fluid density, q
represents stationary sources/sinks density and z is the elevation, positive upward
taken vertical 3-D coordinate expressed in appropriate local coordinates.

We require the second rank tensor K to be symmetric and uniformly positive
definite on each αO, i.e.

∑2
i,j=1Kij(x)ηiηj ≥ β

∑2
i=1 η

2
i , β > 0 for any (η1, η2) ∈

R2 and almost all x ∈ αO \ ∂S, for all ^ ∈ L, and pose also the requirement
ΛD ∩ ΛN = ∅ , ΛD ∪ ΛN = ∂S , ΛD �= ∅.

3 Function Spaces

We start from L2(αO), ‖u‖0,α� = (
∫
α�
u2 dS)

1
2 and L2(αO) = L2(αO) × L2(αO) in

order to introduce

L2(S) ≡
∏
O∈L

L2(αO) , L2(S) ≡ L2(S)× L2(S) . (5)

We begin with classical Sobolev space H1(αO) of scalar functions with square
integrable weak derivatives, H1(αO) = {ϕ ∈ L2(αO); ∇ϕ ∈ L2(αO)}, ‖ϕ‖1,α� =
(
∫
α�
[ϕ2 +∇ϕ · ∇ϕ] dS) 1

2 , so as to introduce

H1(S) ≡ {v ∈ L2(S) ; v|α� ∈ H1(αO) ∀^ ∈ L , (6)

(v|αi)|f = (v|αj )|f ∀ f = αi
⋂
αj , i, j ∈ L } .

We then have the spacesH
1
2 (∂S) andH− 1

2 (∂S) and the surjective continuous trace
operator γ : H1(S)→ H

1
2 (∂S) as in the standard “planar” case. We further can

define H1
D(S) = {ϕ ∈ H1(S) ; γϕ = 0 on ΛD }, H

1
2 (ΛN ) = {µ : ΛN → R; ∃ ϕ ∈

H1
D(S), µ = γϕ}, H− 1

2 (ΛN ) = {ψ ∈ H− 1
2 (∂S); 〈ψ, ϕ〉∂S = 0 ∀ϕ ∈ H1

N (S)} and,
for pd ∈ H

1
2 (ΛD), H1

D,∗(S) = {ϕ ∈ H1(S) ; γϕ = pD on ΛD } .
We denote as H(div, αO) the Hilbert space of vector functions with square inte-

grable weak divergences,H(div, αO) = {v ∈ L2(αO);∇·v ∈ L2(αO)}, ‖v‖H(div,α�) =
(‖v‖20,α� + ‖∇ · v‖

2
0,α�

)
1
2 . We can define now

H(div,S) ≡ {v ∈ L2(S) ; v|α� ∈ H(div, αO) ∀^ ∈ L ,∑
i∈If 〈v|αi · ni, ϕi〉 = 0 (7)

∀f such that |If | ≥ 2 , If = {i ∈ L ; f ⊂ ∂αi} , ∀ϕi ∈ H1
∂αi\f .

We have the surjective continuous normal trace operator ζ : u ∈ H(div,S) →
u · n ∈ H− 1

2 (∂S) as in the standard “planar” case. We further define the space
H0,N (div,S) = {u ∈ H(div,S) ; 〈u · n, ϕ〉∂S = 0 ∀ϕ ∈ H1

D(S)}. The norms on
the spaces defined by (5), (6), (7) are given as

‖ ‖2·,S =
|L|∑
O=1

‖ ‖2·,α� . (8)
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Remark 1. Note that definitions (5), (6), (7) are essential. The system S, however
consisting of plane polygons, is not plane by oneself. Moreover, one edge can be
common to three or more polygons αO creating the system S. Hence the definition
of the space H1(S) of scalar continuous functions and especially of H(div,S) of
normal trace vector continuous functions, expressing the mass balance condition
at each inner edge. Note also that these definitions coincide with the classical ones
for at most two polygons intersecting through one edge, cf. [11, Theorem 1.3.]

We now turn to function spaces necessary for the mixed-hybrid formulation. Let
us thus suppose a triangulation of the system S; we require that the triangulation
in each fracture incorporates the intersections with other fractures. We define an
index set Jh to number the elements of the triangulation Th, |Jh| denotes the
number of elements. We define two sets of edges,

Λh = ∪e∈Th∂e , Λh,D = ∪e∈Th∂e \ ΛD , (9)

and on Λh,D, we set

H
1
2 (Λh,D) = {µ : Λh,D → R ; ∃ϕ ∈ H1

D(S), µe = γhϕ
e ∀e ∈ Th } , (10)

where γh is the trace mapping of functions from H1
D(S) on the edges structure

Λh,D. For the functions from H
1
2 (Λh,D), we have the norm

|µ| 1
2 ,Λh,D

= inf
ϕ∈H1

D(S)
{|ϕ|1,S ; µe = γhϕ

e ∀e ∈ Th} .

Due to ΛD �= ∅, | · | 1
2 ,Λh,D

is a norm on Λh,D equivalent with ‖ · ‖ 1
2 ,Λh,D

. This
definition will be suitable later in order to obtain the inf–sup condition.

The standard hybrid-divergence space H(div, Th) without any continuity re-
quirements has the form

H(div, Th) = {v ∈ L2(S) ; ∇ · ve ∈ L2(e) ∀e ∈ Th} , (11)

with the norm ‖v‖2H(div,Th) =
∑|L|

O=1 ‖v‖
2
0,α�

+
∑|Jh|

O=1 ‖∇ · v‖
2
0,e�

.

4 Existence and Uniqueness of the Primal Formulation

Let us suppose that we have a p̃ such that p̃ ∈ H1
D,∗(S).

Definition 2. As a primal weak solution of the steady saturated fracture flow
problem described by (2) - (4) on the system S, we understand a function p =
p0 + p̃, p0 ∈ H1

D(S), such that

(K∇p0,∇ϕ)0,S + 〈σp0, ϕ〉ΛN = (q, ϕ)0,S + 〈σpD − uN , ϕ〉ΛN −
−(K∇z,∇ϕ)0,S − (K∇p̃,∇ϕ)0,S − 〈σp̃, ϕ〉ΛN ∀ϕ ∈ H1

D(S) . (12)

Our general requirements are Kij ∈ L∞(S), q ∈ L2(S), pD ∈ H
1
2 (ΛD ∪ ΛN),

uN ∈ H− 1
2 (ΛN ) and σ ∈ L∞(ΛN ), 0 ≤ σ ≤ σM .
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Theorem 3. The problem (12) has a unique solution.

Proof. Considering standard techniques (triangle inequality, bound |Kij(x)| ≤ K,
Schwarz’s inequality, positive definiteness of the tensor K on each αO, estimates
for Sobolev spaces H1(αO), ΛD �= ∅) and the definition of all norms like in (8), the
only crucial point is the use of Hölder’s inequality

(
∑n

i=1 a
2
i )

1
2 (
∑n

i=1 b
2
i )

1
2 ≥

∑n
i=1 aibi, ai, bi ∈ R . (13)

The term ‖z‖1,S is surely finite, since in each fracture, the 3-D z coordinate is
expressed in its local coordinates as a linear function, and ∇z is thus a constant
vector in each αO, ^ ∈ L. We have that the left hand side of (12) represents a
bilinear continuous form on H1

D(S) × H1
D(S), coercive on H1

D(S), and since the
right hand side of (12) represents a linear continuous functional on H1

D(S), the
assertion is assured by the Lax–Milgram lemma.

5 Mixed FEM and Subsequent Hybridization

Although the possibility to use the mixed finite element method is not apparent at
the first sight because of the special geometrical situation treated, we will see that
it is possible due to the special function spaces introduced in Section 3 and special
approximation spaces introduced in this section, considering also the existence and
uniqueness of the primal formulation. We take σ = 0, i.e. the problem (2) - (4)
with only Neumann boundary conditions.

5.1 Weak Mixed Solution

The tensor of the fracture hydraulic conductivity K is positive definite on each αO,
and therefore there exists, on each αO, a positive definite tensor A = K−1 which
characterizes the medium resistance. Let us now consider such ũ that ũ · n = uN
on ΛN in appropriate sense.

Definition 4. As a weak mixed solution of the steady saturated fracture flow
problem described by (2) – (4), we understand functions u = u0 + ũ, u0 ∈
H0,N (div,S), and p ∈ L2(S) satisfying

(Au0,v)0,S − (∇ · v, p)0,S = −〈v · n, pD〉ΛD + (∇ · v, z)0,S − (14)

−〈v · n, z〉∂S − (Aũ,v)0,S ∀v ∈ H0,N (div,S) ,

−(∇ · u0, φ)0,S = −(q, φ)0,S + (∇ · ũ, φ)0,S ∀φ ∈ L2(S) . (15)

Our general requirements are Aij ∈ L∞(S), q ∈ L2(S), pD ∈ H
1
2 (ΛD) and uN ∈

H− 1
2 (ΛN ).

Theorem 5. The problem (14), (15) has a unique solution.
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Proof. Let us denote

a(u,v) = (Au,v)0,S =
|L|∑
O=1

∫
α�

Au · v dS ,

b(v, φ) = (∇ · v, φ)0,S =
|L|∑
O=1

∫
α�

∇ · v φ dS ,

f(v) and g(φ) the functionals on the right hand sides of (14), (15) respectively,
and V = H0,N (div,S), Φ = L2(S), and W = {v ∈ V ; b(v, φ) = 0 ∀φ ∈ Φ}. It
is easy then to show that the form a(·, ·) is a bilinear continuous form on V ×V,
moreover coercive on W, the form b(·, ·) is a bilinear continuous form on V × Φ
satisfying the inf–sup (Babuška–Brezzi) condition

inf
φ∈Φ

sup
v∈V

b(v, φ)
‖v‖H(div,S)‖φ‖(0,S)

≥ k1 (16)

with k1 > 0. Further, the functional f(·) is a linear continuous functional on V
and the functional g(·) is a linear continuous functional on Φ. The proofs are direct
applications of standard techniques; essential is the existence and uniqueness of the
primal solution and again Hölder’s inequality (13), see [14] for details. Using [11,
Theorem 10.1.] (originally Brezzi 1974), we have the assertion.

5.2 Mixed Finite Element Approximation

We define a 3-dimensional space RT0(e) of vector functions linear on a given
element e with the basis vei , i ∈ {1, 2, 3}, where

ve1 = ke1

[
x− αe11
y − αe12

]
, ve2 = ke2

[
x− αe21
y − αe22

]
, ve3 = ke3

[
x− αe31
y − αe32

]
.

Concerning its dual basis, we state classically Ne
j , j = 1, 2, 3, Ne

j (uh) =
∫
fej

uh ·
ne
j dl, where each functional Ne

j expresses the flux through one edge for uh ∈
RT0(e); we have Ne

j (v
e
i ) = δij after appropriate choice of αe11 − αe32, ke1 − ke3. The

local interpolation operator is then given by

πe(u) =
3∑

i=1

Ne
i (u)v

e
i ∀ u ∈ (H1(e))2 . (17)

We start from the Raviart–Thomas space RT0
−1(Th) of on each element linear

vector functions without any continuity requirements,

RT0
−1(Th) ≡ {v ∈ L2(S) ; v|e ∈ RT0(e) ∀e ∈ Th} ,

to define the necessary “continuity assuring” space RT0
0(Th) by

RT0
0(Th) ≡ {v ∈ RT0

−1(Th) ;
∑

i∈If v|ei · nf,∂ei = 0 ∀f such that

|If | ≥ 2 , If = {i ∈ Jh ; f ⊂ ∂ei} = RT0
−1(Th) ∩H(div,S) .
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We set furthermore

RT0
0,N (Th) ≡ {v ∈ RT0

0(Th) ; v · n = 0 in ΛN} = RT0
−1(Th) ∩H0,N (div,S)

and
M0

−1(Th) ≡ {φ ∈ L2(S) ; φ|e ∈M0(e) ∀e ∈ Th} ,
where M0(e) is the space of scalar functions constant on a given element e. Look-
ing for the basis, appropriate dual basis, and global interpolation operator for
RT0

0(Th), we have the following definitions and lemmas:

We set Nh = {N1, N2, . . . , NINh
} as the dual basis of RT0

0(Th), where for each
border edge f , we have one functional Nf defined by Nf (uh) =

∫
f uh|e ·n∂e dl, and

for each inner edge f common to elements e1, e2, . . . , eIf , we have If−1 functionals
given by

Nf,j(uh) =
1
If

∫
f

uh|e1 · n∂e1 dl −
1
If

∫
f

uh|ej+1 · n∂ej+1 dl , j = 1, . . . , If − 1 .

Lemma 6. For all uh ∈ RT0
0(Th), from Nj(uh) = 0 ∀ j = 1, . . . , INh

follows that
uh = 0.

Proof. Let us suppose that Nj(uh) = 0 ∀ j = 1, . . . , INh
. From the definition of the

functionals Nf on border edges, we have
∫
f uh|e ·n∂e dl = 0 for all border edges f .

Concerning the definition of the functionals Nf,j on inner edges and the condition
Nf,j(uh) = 0, we have

∫
f
uh|e1 · n∂e1 dl =

∫
f
uh|ej · n∂ej dl for all j = 2, . . . , If .

Considering the equality
∑If

i=1

∫
f
uh|ei · n∂ei dl = 0 characterizing the continuity

of the functions from RT0
0(Th), we come to

∫
f
uh|e · n∂e dl = 0 for all f ∈ Λh

and all e, f ⊂ e. Since RT0
0(Th) ⊂ RT0

−1(Th) and all coefficients for the local
interpolants on each e ∈ Th are equal to zero, uh = 0 follows.

We set Vh = {v1,v2, . . . ,vINh
}, where for each border edge f , we have one base

function vf defined by vf = vef with vef being the local base function appropriate
to the element e and its edge f , and for each inner edge f common to elements
e1, e2, . . . , eIf , we have If − 1 base functions given by

vf,i =
If∑

k=1, k �=i+1

vekf − (If − 1)vei+1
f , i = 1, . . . , If − 1 .

Lemma 7. For the bases Nh and Vh, Nj(vi) = δij, i, j = 1, . . . , INh
holds.

Proof. We have from the definition of base functions of RT0(e) that Nf (vf ) = 1
for all border edges f , and simply Nf(v) = 0 for all v ∈ Vh, v �= vf . Concerning
the inner edges, we easily come to Nf,j(vg) = 0 for all j = 1, . . . , If −1, f an inner
edge, g border edge, and to Nf,j(vg,i) = 0 for all j = 1, . . . , If−1, i = 1, . . . , Ig−1,
f an inner edge, g another inner edge. We have

Nf,j(vf,i) =
1
If

∫
f

ve1f · n∂e1 dl −
1
If

∫
f

vej+1
f · n∂ej+1 dl =

1
If
− 1
If

= 0
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for i �= j, and

Nf,j(vf,i) =
1
If

∫
f

ve1f · n∂e1 dl −
1
If

∫
f

−(If − 1)vej+1
f · n∂ej+1 dl =

=
1
If

+
1
If

(If − 1) = 1

for i = j, i, j = 1, . . . , If − 1, f an inner edge. Thus the proof is completed.

We introduce first a space smoother than H(div,S), corresponding to the clas-
sical (H1(S))2,

H(grad,S) = {v ∈ L2(S) ; v|α� ∈ (H1(αO))2 ∀^ ∈ L ,∑
i∈If v|αi · nf,∂αi = 0 (18)

∀f such that |If | ≥ 2 , If = {i ∈ L ; f ⊂ ∂αi} ,

in order to set the global interpolation operator

πh(u) =
INh∑
i=1

Ni(u)vi ∀ u ∈ H(grad,S) . (19)

Lemma 8. Concerning the local and global interpolation operators given by (17),
(19) respectively, we have their equality on each element, i.e.

πh(u)|e = πe(u|e) ∀ e ∈ Th, ∀ u ∈ H(grad,S) .

Proof. As the the base functions vi, i = 1, . . . , INh
of RT0

0(Th) are combined from
the base functions vej on each element, we only have to verify that the coefficients
by vej are the same. By border edges, the situation is apparent – the coefficients
for both local and global interpolation operators are given by

∫
f
u|e · n∂e dl. For

the inner edges, we have

{If−1∑
i=1

Nf,i(u)vf,i
}∣∣∣

ej
=
{If−1∑

i=1

( 1
If

∫
f

u|e1 · n∂e1 dl −
1
If

∫
f

u|ei+1 · n∂ei+1 dl
)
·

( If∑
k=1, k �=i+1

vekf − (If − 1)vei+1
f

)}∣∣∣
ej
=

If−1∑
i=1, i�=j−1

( 1
If

∫
f

u|e1 · n∂e1 dl −

− 1
If

∫
f

u|ei+1 · n∂ei+1 dl
)
· vejf − (1 − δj1)

( 1
If

∫
f

u|e1 · n∂e1 dl −

− 1
If

∫
f

u|ej · n∂ej dl
)
· (If − 1)vejf
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using the definition of Nf,i and vf,i for an inner edge f , i = 1, . . . , If − 1, j =
1, . . . , If . Considering now only the coefficients by vejf , we come to

If−1∑
i=1

1
If

∫
f

u|e1 · n∂e1 dl −
If−1∑
i=1

1
If

∫
f

u|ei+1 · n∂ei+1 dl =

=
(
(If − 1)

1
If

+
1
If

) ∫
f

u|e1 · n∂e1 dl =
∫
f

u|e1 · n∂e1 dl

for j = 1, using the normal trace continuity of u expressed by
∑If

i=1

∫
f
u|ei ·

n∂ei dl = 0. Similarly, we have

(If − 2)
1
If

∫
f

u|e1 · n∂e1 dl +
1
If

∫
f

u|e1 · n∂e1 dl +
1
If

∫
f

u|ej · n∂ej dl −

−(If − 1)
1
If

∫
f

u|e1 · n∂e1 dl + (If − 1)
1
If

∫
f

u|ej · n∂ej dl =
∫
f

u|ej · n∂ej dl

for j ≥ 2, and thus the proof is completed.

Lemma 9. Even for the considered special function spaces and their finite di-
mensional subspaces, we have

H(grad,S) div−→ L2(S)>πh >Ph
RT0

0(Th)
div−→M0

−1(Th)

, (20)

i.e. the commutativity diagram property, where πh is the global interpolation op-
erator defined by (19), and Ph is the L2(S)-orthogonal projection onto M0

−1(Th).

Proof. The proof is easy using the previous lemma and the validity of the commu-
tativity diagram property for the local interpolation operator, see e.g. [9, Section
3.4.2].

Definition 10. As the lowest order Raviart–Thomas mixed approximation of the
the problem (14), (15), we understand functions u0,h ∈ RT0

0,N (Th) and ph ∈
M0

−1(Th) satisfying

(Au0,h,vh)0,S − (∇ · vh, ph)0,S = −〈vh · n, pD〉ΛD + (∇ · vh, z)0,S − (21)

−〈vh · n, z〉∂S − (Aũ,vh)0,S ∀vh ∈ RT0
0,N (Th) ,

−(∇ · u0,h, φh)0,S = −(q, φh)0,S + (∇ · ũ, φh)0,S ∀φh ∈M0
−1(Th) . (22)

Theorem 11. The problem (21), (22) has a unique solution.
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Proof. Let us denote Vh = RT0
0,N (Th), Φh = M0

−1(Th) and Wh = {vh ∈
Vh ; b(vh, φh) = 0 ∀φh ∈ Φh}. As Vh ⊂ V, Φh ⊂ Φ, the (bi)linearity and
continuity of the forms a(·, ·), b(·, ·) and of the functionals f(·) and g(·) from The-
orem 5 holds also on Vh and Φh. Since Wh ⊂W, also the coercivity of the form
a(·, ·) is assured. For the discrete inf–sup condition, essential is the commutativity
diagram property expressed by (20), at least for the case ΛN = ∅. For the case
ΛN �= ∅, a special procedure has to be carried out, cf. [11], pages 587-588.

5.3 Error Estimates

If the solution (u0, p) ∈V×Φ of (14), (15) is such that (u0, p) ∈H(grad,S)×H1(S)
and ∇·u0 ∈ H1(S) and if (u0,h, ph) ∈ Vh×Φh is the solution of (21), (22), then

‖u0 − u0,h‖H(div,S) + ‖p− ph‖0,S ≤ Ch(|p|1,S + |u0|1,S + |∇ · u0|1,S) , (23)

where the constant C does not depend on h and |ϕ|1,S = ‖∇ϕ‖0,S , |u|21,S =∑2
i=1 |ui|21,S (see [11], Theorem 13.2).

5.4 Hybridization of the Mixed Method

If f ∈ Λh, we define first the space M0(f) of functions constant on this edge and
finally, on the edges structure Λh,D defined by (9),

M0
−1(Λh,D) ≡ {µh : Λh → R ; µh|f ∈M0(f) ∀f ∈ Λh ,

µh|f = 0 ∀f ∈ ΛD} . (24)

It now follows immediately that if vh ∈ RT0
−1(Th), then vh ∈ RT0

0,N(Th) if and
only if ∑

e∈Th

〈vh · n, λh〉∂e∩Λh,D
= 0 ∀λh ∈M0

−1(Λh,D) ,

which allows us to state the hybrid version of the lowest order Raviart–Thomas
mixed method:

Definition 12. As the lowest order Raviart–Thomas mixed-hybrid approxima-
tion of the the problem (14), (15), we understand functions u0,h ∈ RT0

−1(Th),
ph ∈M0

−1(Th), and λh ∈M0
−1(Λh,D) satisfying∑

e∈Th

{(Au0,h,vh)0,e − (∇ · vh, ph)0,e + 〈vh · n, λh〉∂e∩Λh,D
} =

=
∑
e∈Th

{−〈vh · n, pD〉∂e∩ΛD + (∇ · vh, z)0,e − 〈vh · n, z〉∂e − (Aũ,vh)0,e}

∀vh ∈ RT0
−1(Th) , (25)

−
∑
e∈Th

(∇ · u0,h, φh)0,e = −
∑
e∈Th

{(q, φh)0,e − (∇ · ũ, φh)0,e}

∀φh ∈M0
−1(Th) , (26)
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e∈Th

〈u0,h · n, µh〉∂e∩Λh,D
=
∑
e∈Th

{〈uN , µh〉∂e∩ΛN − 〈ũ · n, µh〉∂e∩Λh,D
}

∀µh ∈M0
−1(Λh,D) . (27)

Due to the previously mentioned, the triple u0,h, ph, λh surely exist and is
unique, u0,h and ph are moreover at the same time the unique solutions of (21),
(22); moreover, the multiplier λh is an approximation of the trace of p on all edges
from Λh,D. Consequently, all error estimates from Section 5.3 are valid also for the
mixed-hybrid solution triple u0,h, ph, λh and we have the following theorem:

Theorem 13. The problem (25) – (27) has a unique solution.

6 Mixed-hybrid FEM

We will use in this part the mixed-hybrid finite element method as introduced
by [8] to treat our problem of steady saturated fracture flow. In fact, its use is
more straightforward in the given case, since it handles even the case of one edge
belonging to three or more triangles without any changes of formulation – through
additional summation equation assuring the mass balance condition on inner edges.

6.1 Weak Mixed-hybrid Solution

We define the space

WD(Th) = H(div, Th)× L2(S) ×H 1
2 (Λh,D) (28)

with the norm ‖w‖2WD(Th) = ‖v‖2H(div,Th) + ‖φ‖
2
0,S + |µ|21

2 ,Λh,D
. On WD(Th) ×

WD(Th), we define a bilinear form B,

B(ŵ,w) =
∑
e∈Th

{
(Au,v)0,e − (∇ · v, p)0,e + 〈v · n, λ〉∂e∩Λh,D

− (29)

−(∇ · u, φ)0,e + 〈u · n, µ〉∂e∩Λh,D
− 〈σλ, µ〉∂e∩ΛN

}
and on WD(Th) a linear functional Q,

Q(w) =
∑
e∈Th

{
−〈v · n, pD〉∂e∩ΛD + (∇ · v, z)0,e − 〈v · n, z〉∂e − (30)

−(q, φ)0,e + 〈uN − σpD, µ〉∂e∩ΛN

}
,

where ŵ = (u, p, λ) ∈WD(Th) and w = (v, φ, µ) ∈WD(Th).

Definition 14. As a weak mixed-hybrid solution of the steady saturated fracture
flow problem described by (2) – (4), we understand a function ŵ = (u, p, λ) ∈
WD(Th) satisfying

B(ŵ,w) = Q(w) ∀w = (v, φ, µ) ∈WD(Th) . (31)
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Our general requirements are Aij(x) ∈ L∞(S), q ∈ L2(S), pD ∈ H
1
2 (ΛD ∪ ΛN),

uN ∈ H− 1
2 (ΛN ) and σ ∈ L∞(ΛN ), 0 ≤ σ ≤ σM .

Theorem 15. The problem (31) has a unique solution.

Proof. The problem (31) is the same as originally studied by Oden and Lee in [8],
except of incorporation of Newton boundary condition and occurrence of the ver-
tical coordinate z. Using the existence and uniqueness of the primal solution even
in our geometrical situation, there are no complications to show that the form
B(·, ·) is a bilinear continuous form on WD(Th)×WD(Th), satisfying the inf–sup
condition of the type (16), and that the functional Q(·) is a linear continuous func-
tional on WD(Th). The existence and uniqueness follows by the theory of Babuška,
see [1, Theorem 2.1].

6.2 Mixed-hybrid Finite Element Approximation

We equip the space M0
−1(Λh,D) of edge-wise constant functions defined by (24)

with the norm
|µh|2∗ 1

2 ,Λh,D
=
∑
e∈Th

|µh|2∗ 1
2 ,∂e

, (32)

where |µh|∗ 1
2 ,∂e

= |µ∗h| 12 ,∂e with µ∗h ∈ H
1
2 (∂e), µ∗h edge-wise linear and satisfying∫

∂ei
µh dl =

∫
∂ei

µ∗h dl, i ∈ {1, 2, 3}, where ∂ei are the sides of the triangle e. One
can show that such definition is correct. We can now define the finite-dimensional
approximation space

Wh
D(Th) = RT0

−1(Th)×M0
−1(Th)×M0

−1(Λh,D)

equipped with the norm ‖wh‖2Wh
D(Th) = ‖vh‖2H(div,Th) + ‖φh‖

2
0,S + |µh|2∗ 1

2 ,Λh,D
,

wh = (vh, φh, µh) ∈Wh
D(Th).

Definition 16. As the lowest order Raviart–Thomas mixed-hybrid approxima-
tion of the the problem (31), we understand a function ŵh = (uh, ph, λh) ∈
Wh

D(Th) satisfying

B(ŵh,wh) = Q(wh) ∀wh = (vh, φh, µh) ∈Wh
D(Th) . (33)

Theorem 17. The problem (33) has a unique solution.

Proof. Using the definition of the norm (32), it is rather elaborate to show that
the form B(·, ·) is a bilinear continuous form also on Wh

D(Th)×Wh
D(Th), satisfying

the discrete inf–sup condition, and that the functional Q(·) is a linear continuous
functional also on Wh

D(Th). Special qualities of the space RT0(e) are used while
replacing edge-wise constant µh by its edge-wise linear counterpart µ∗h ∈ H

1
2 (∂e)

in the proofs.
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Remark 18. The definition of the norm (32) for µh ∈ M0
−1(Λh,D) is necessary.

The form B(·, ·) is not a continuous form on Wh
D(Th) ×Wh

D(Th) equipped with the
norm ‖µh‖20,Λh,D

=
∑

f∈Λh,D
‖µh‖20,f for µh. If we improve the norm on Wh

D(Th) as
‖wh‖2Wh

D(Th) = ‖vh‖
2
H(div,Th)+‖vh ·n‖

2
0,Λh

+‖φh‖20,S+‖µh‖20,Λh,D
, the form B(·, ·)

gets continuous, but the discrete inf–sup condition is not satisfied with a constant
independent of h, all owing to the mixture of the spaces RT0(e) approximating
H(div, e) with generally only u·n ∈ H− 1

2 (∂e), u ∈ H(div, e), andM0
−1(∂e) of edge-

wise constant functions belonging generally only to L2(∂e). By the definition (32),
we “skip” into necessary H

1
2 (∂e).

6.3 Error Estimates

We shall notice first that we are dealing with a nonconform approximation. We
have approximated the space H

1
2 (Λh,D) given by (10) by the space M0

−1(Λh,D)
given by (24). We set

X =
{
v ∈ H(div, Th) ; v · n ∈ L2(Λh,D)

}
×
{
φ ∈ L2(S)

}
×

×
{
µ+ µh ; µ ∈ H

1
2 (Λh,D) , µh ∈M0

−1(Λh,D)
}
,

‖w‖2X = ‖v‖2H(div,Th) + ‖φ‖
2
0,S + |µ+ µh|2∗ 1

2 ,Λh,D
, and after some tedious manipu-

lations, we come to the bilinearity and continuity (with the constant CX
1 ) of the

form B(·, ·) on X ×Wh
D(Th). The error estimate is consequently of the form

‖ŵ− ŵh‖X ≤

≤
(
1 +

CX
1

Cd
2

)
inf

wh∈Wh
D(Th)

‖ŵ−wh‖X +
1
Cd
2

sup
wh∈Wh

D(Th)

|Q(wh)− B(ŵ,wh)|
‖wh‖X

,

ŵ = (u, p, λ) ∈WD(Th)
⋂
X being the unique weak mixed-hybrid solution defined

by (31), ŵh = (uh, ph, λh) ∈ Wh
D(Th) the mixed-hybrid approximation defined

by (33), and Cd
2 being the constant from the discrete inf–sup condition. However,

due to the restriction v · n ∈ L2(Λh,D) (necessary to give the sense to the term
B(ŵ,wh) from the nonconform error estimate), we come to

sup
wh∈Wh

D(Th)

|Q(wh)− B(ŵ,wh)|
‖wh‖X

= sup
µh∈M0

−1(Λh,D)

|
∑

e∈Th{〈u · n, µh〉∂e\∂S+

+〈u · n− uN , µh〉∂e∩ΛN + 〈σ(pD − λ), µh〉∂e∩ΛN }|
|µh|∗ 1

2 ,Λh,D

= 0

and thus the final error estimate has the form

‖ŵ− ŵh‖X ≤
(
1 +

CX
1

Cd
2

)
Ch
√
(|u|1,S + |∇ · u|1,S)2 + ‖p‖22,S , (34)

for u ∈ H(grad,S), ∇ · u ∈ H1(S) and p ∈ H2(S) except of the previous re-
quirements, the constant C independent of h. This means that we have the O(h)
accuracy, however not for the edge-wise constant µh, but for its extension µ∗h.
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7 Model Problems

We consider two simple model problems in this section. The first model problem is
a model problem on a system S, where at most two polygons intersect through one
edge, i.e. almost classical planar case; we call this as special geometrical situation.
In the second model problem, one edge is common to four polygons; we call this
situation, the kernel of what has been investigated in this contribution, as a general
geometrical situation. All the computations were done in double precision on a
personal computer, the resulting symmetric indefinite systems of linear equations
were solved by the solver GI8 of the Institute of Computer Science, Academy of
Sciences of the Czech Republic, see [6]. This is based on the sequential elimination
onto a system with Schur’s complement and subsequent solution of this system by
a specially preconditioned conjugate gradients method. The solver accuracy was
set to 10−8.
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Fig. 1. Model Problem I – Special Geometrical Situation
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7.1 Model Problem I – Special Geometrical Situation

The problem with the system S viewed in Figure 1 is as follows:

S = α1
⋃
α2 \ ∂S ,

u = −
(
∇p+∇z

)
in S ,

∇ · u = 0 in S ,

p = 0 in Λ1 , p = 0 in Λ2

u · n = 0 in Λ3 , u · n = 0 in Λ4

p = sin
(
πx1
2X

)
sinh

(
π(A+B)

2X

)
+ S · A in Λ5 , p = S · y1 in Λ6 .

The exact solutions in α1 can be easily found as

pα1 = sin
(πx1
2X

)
sinh

(π(y1 +B)
2X

)
+ S · y1 ,

uα1 =
(
− π

2X
cos
(πx1
2X

)
sinh

(π(y1 +B)
2X

)
,

− π

2X
sin
(πx1
2X

)
cosh

(π(y1 +B)
2X

)
− S −∇zyα1

)
,

where ∇zα1 = (0,∇zyα1
), S + ∇zyα1

= ∇zyα2
, and we can see them in Figures 2

and 3. Notice the occurrence of the term S assuring the continuity of the velocity
field because of different z gradients in α1 and α2.

The following table gives pressure, velocity, and pressure trace errors in the
fracture α1. There is the O(h) convergence in pressure, velocity, and pressure
trace in | · |∗ 1

2 ,Λh,D
norm, but only O(h

1
2 ) in pressure trace in ‖ · ‖0,Λh,D

norm.

N triangles ‖p− ph‖0,S ‖u − uh‖H(div,Th) ‖λ− λh‖0,Λh,D |λ− λh|∗ 1
2 ,Λh,D

2 8×2 0.4481 1.2236 1.4984 1.2236
4 32×2 0.2212 0.6262 1.0564 0.6262
8 128×2 0.1102 0.3150 0.7509 0.3150
16 512×2 0.0550 0.1577 0.5332 0.1577
32 2048×2 0.0275 0.0789 0.3779 0.0789
64 8192×2 0.0138 0.0394 0.2676 0.0394
128 32768×2 0.0069 0.0197 0.1893 0.0197
256 131072×2 0.0034 0.0099 0.1339 0.0099

Table 1. Pressure, Velocity, and Pressure Trace Errors in α1 for the Special Ge-
ometrical Situation, Model Problem I
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Fig. 2. Exact Pressure Graph in Fractures α1 and α2, Model Problems I and II
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Fig. 4. Model Problem II – General Geometrical Situation

7.2 Model Problem II – General Geometrical Situation

The system S for this model problem is viewed in Figure 4. We have

S = α1
⋃
α2
⋃
α3
⋃
α4 \ ∂S ,

u = −
(
∇p+∇z

)
in S ,

∇ · u = 0 in S ,

p = 0 in Λ7 , p = 0 in Λ8

u · n = 0 in Λ9 , u · n = 0 in Λ10

p = sin
(
πx4
2X

)
sinh

(
π(B+B)

2X

)
in Λ11 , p = 0 in Λ12 ,

and boundary conditions on Λ1 – Λ6 as for the model problem I. The exact solu-
tions in α1 and α2 stay the same.
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We give approximation errors in the first fracture α1. As the exact solutions
coincide for the model problems I a II, we can compare tables 1 and 2, i.e. special
(almost classical, planar) and general (the situation characteristic for the inves-
tigated problem of the fracture flow) geometrical situations. A slight difference
appears only for rough triangulations and disappears for the increasing N. Thus,
demonstrated for these two model problems, the existence of triangulation edges
common to three and more triangles does not influence the error, resp. conver-
gence order. This was verified also for the pressure, velocity and pressure trace
error distributions, as we can see in Figures 5, 6 and 7.

N triangles ‖p− ph‖0,S ‖u − uh‖H(div,Th) ‖λ− λh‖0,Λh,D |λ− λh|∗ 1
2 ,Λh,D

2 8×4 0.4445 1.2247 1.4973 1.2247
4 32×4 0.2212 0.6263 1.0562 0.6263
8 128×4 0.1102 0.3150 0.7509 0.3150
16 512×4 0.0550 0.1577 0.5332 0.1577
32 2048×4 0.0275 0.0789 0.3779 0.0789
64 8192×4 0.0138 0.0394 0.2676 0.0394
128 32768×4 0.0069 0.0197 0.1893 0.0197
256 131072×4 0.0034 0.0099 0.1339 0.0099

Table 2. Pressure, Velocity, and Pressure Trace Errors in α1 for the General
Geometrical Situation, Model Problem II
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Fig. 5. Distribution of the Pressure Error in α1, Model Problems I and II
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Fig. 8. Generated Fracture Network on a 5 × 5 × 8 m Domain

8 Simulation of a Real Situation: Stochastic Discrete
Fracture Network Generation and Discretization

We describe in this section the preparation of the fracture network and its trian-
gulation in real situations.

8.1 Stochastic Discrete Fracture Network Generation

In order to generate stochastic discrete fracture networks, an original software
called Fracture Network Generator was developed. Each fracture (geological
3-D object) is in the generator approximated by a flat circle disk characterized
by its middle coordinates, radius, orientation, possibly hydraulic conductivity or
aperture distribution and roughness. Fractures are divided into four sets: fractures
in fracture zones, deterministically measured single fractures, hydraulically impor-
tant fractures and other (common) fractures. Fractures are further supposed to
be divided into three types according to their mean orientation in 3-D cartesian
coordinates [0,0,1], [0,1,0] or [1,0,0]. Each combination of set and type, except of
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deterministically measured single fractures, is treated as an independent statis-
tical population. Number of fractures and spacing determines fracture frequency,
defined as amount of fractures per one depth meter in each part of the simulated
domain. Fracture lengths are supposed as lognormally distributed, i.e. with the
probability density function (p.d.f.) f(x) = 1

σ
√
2πx

exp(−(lnx−µ)2/2σ2). Concern-
ing orientations, fractures are supposed to have the Fisher-von-Mises distribution
f(α) = k

exp(k) exp(k cosα) sinα of angles α between fracture normal vectors and
vectors of mean orientations.

In order to validate methods used for the statistical description and generating
algorithms, χ2 tests for each simulated variable were carried out, see [12]; we
only have to put an emphasis on strictly distinguishing between real statistical
characteristics and by “exploration boreholes” measured distributions, the latter
of them being affected by a selective effect. Indeed, while drilling borehole, we have
a bigger chance to intersect a larger fracture than a smaller one. We can see an
example of a generated network in Figure 8.

8.2 Final Triangular Mesh Construction

Discretization of approximating circle disks into triangle elements has occurred as
a crucial point. Although many algorithms solving the discretization of a given
2-D domain are known, only few of them are able to involve pre-defined interface
lines, intersections of approximating circles in our case. The searched algorithm
should be in addition capable to simplify the given geometrical situation (to save
computer storage and avoid numerical faults and ill-conditioned resulting matrix),
i.e. it can be only approximate; obtaining the initial mesh is also sufficient. In the
Fracture Network Generator, an originally developed discretization algorithm
is implemented. It contains of a preliminary phase and of an algorithm for trian-
gulation of an arbitrary polygonally bounded domain with pre-defined interface
lines (triangulation algorithm).

Fig. 9. 2-D Geometrical Simplifications
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Fig. 10. Final Discretization of a Circle Disk

In the preliminary phase, identification and various geometrical simplifications
are made. Close, almost parallel fractures are removed from the fracture population
or equivalently replaced. 2-D geometrical simplifications (moving and stretching
intersections in fracture planes) are carried out before the start of the actual tri-
angulation algorithm; we can see an example of these simplifications in Figure 9.
Using these 2-D geometrical simplifications has naturally non-trivial 3-D conse-
quences - if the simplifications are used, then the real geometrical correspondence
vanishes. It is then replaced by extra connectivity information.

The actual triangulation algorithm is based on combining the Domain De-
composition Conception, expressing that the domain is split into two parts along
an intersection whenever possible, and adapted classical triangulation algorithm,
Advancing Front Method. Many user’s setting influencing incorporating the geo-
metrical simplifications and thus the precision/complexity of the final triangulation
are possible. An example of final triangulation of a random circle disk is in Fig. 10.

An on-element aperture distribution function is used after the discretization in
order to assign to each triangle element an imaginary aperture. It is derived again
from the Fisher-von-Mises distribution p.d.f., but depends also on the size of the
given fracture and emplacement of the element inside the fracture. Based on the
aperture and on a parameter describing roughness of the fracture walls, the ele-
ment hydraulic conductivity can be later set, in order to simulate the “channeling
effect” (the flow throughout a natural fracture is not evenly distributed throughout
the whole fracture plane because of its non-constant aperture – channels of flow
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occur). The fracture is, however, still supposed as planar. Data files with complete
information about elements in the final triangular network (emplacement, aper-
ture, roughness, hydraulic conductivity and connection to other elements) are the
final results of the Fracture Network Generator. We can see the final trian-
gular mesh of the network from Fig. 8 in Fig. 11. A colour gradiation is used in
order to denote elements apertures.

Fig. 11. Triangulation of the Network from Figure 8

9 Conclusion

In the submitted text, a discrete fracture network model of the fracture flow with
existence and numerical analysis, examples of model problems, and description
of application on real situations was introduced. The finite element method for
numerical approximation was chosen so as to achieve the biggest possible accu-
racy. The mixed-hybrid approximation was chosen because it, unlike the primal
approximation, assures mass balance on each element and its data structures are
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though suitable for subsequent finite volume contaminant transport models, which
are perspectively our main goal. In this approximation, the velocity is moreover
computed directly and has good continuity rank, on the other hand, slightly bigger
resulting matrix is the only drawback.

The mixed-hybrid weak formulation is much more straightforward in the given
case, when three or more triangles can intersect through one edge in the discretiza-
tion; it expresses directly the mass balance condition on such edges. However, the
lowest order Raviart-Thomas mixed-hybrid approximation is a nonconform ap-
proximation to the weak mixed-hybrid solution, which causes difficulties while
investigating its existence, uniqueness, and approximation error. Under the con-
struction of special function spaces, mixed weak solution and approximation were
established too, and their existence and uniqueness were shown using classical
techniques.
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