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Abstract. The dynamic equation (14) unifying both the Verhulst differen-
tial and the Pielou difference logistic equations is derived. Some application
of it is briefly discussed.
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1 Introduction

The logistic equation

x′ = rx
(
1− x

K

)
(1)

introduced by Pierre François Verhulst in 1838 [8] has became a useful tool in
modeling of a population growth. Here, x denotes a “size” of population (number
of individuals, population density, biomass etc.), r an intrinsic growth rate and K
a carrying capacity of environment. The equation serves as a “standard equation”
in population dynamics and it uses to be generalized in various directions. Among
these generalizations, discrete analogies of equation (1) play an important role —
such difference equations represents models of populations with non-overlapping
generations. There are several discrete logistic equations. The Euler discretization
of equation (1) with the step 1 gives the equation

xk+1 = `xk

(
1− xk

K

)
, (2)

which was utilized e.g. by Maynard Smith [5]. This equation has one great disad-
vantage: if the population size is greater than K, it become negative in the next
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time step. This is why, another discrete population models were constructed. The
most popular one is the May [4] equation

xk+1 = xk exp
[
ρ
(
1− xk

K

)]
. (3)

A different discrete equation

xk+1 =
`xk

1 + P−1
K xk

(4)

was proposed by Pielou [6].
Now, the equation arises — which equation among (2), (3) and (4) is a “cor-

rect” discrete analogy of equation (1)? By the “correctness”, I mean the following
property: there exists a general equation such that equation (1) and a difference
equation are particular cases of it. Recently, a powerful tool for unification of
differential and difference equations was discovered by Stefan Hilger [2]. It is the
calculus on a special structure — measure chains or time scales. (The two concepts
were used as synonyms in the original Hilger’s papers. Now, the words “measure
chain” denote an abstract structure while the notion “time scale” stands for a
particular subset of reals.)

The unification of discrete and continuous models of population growth has
much more than a theoretical (or aesthetic) significance. An evolution of popu-
lation may be neither completely continuous nor completely discrete. A certain
species may evolve in a continuous way during a period of favorable conditions.
But such a period may be interrupted by an event or by a season of bad conditions
and the size of population “jumps” to a different value after such event or season.
As a typical examples, we can consider an insect population taken for a pest in
agriculture and hence chemically destroyed in regular or irregular time intervals,
or a population of mites which reproduces itself with several generations during
spring and summer times and only some fertilized females survive winter season.
A unified equation — neither continuous nor discrete but possessing properties of
the both cases — should describe such populations, too.

The derivation of unified equation is the main result of the contribution. In the
next section, the notion of measure chain is briefly described, the dynamic equa-
tions and the exponential function on measure chain are reminded. This section
is intended mainly as an “advertisement” of the theory. The calculus on measure
chain (time scales) is described in details in the monographs [1] and [3]. The last
section contains the announced result.

2 Measure chains

Measure chain is a set T satisfying the following axioms.
Axiom 1 (Chain) T is totally ordered set.
This means that there is a relation ≤ on T which is reflexive (t ≤ t for all

t ∈ T), antisymmetric (s ≤ t and t ≤ s ⇒ s = t), transitive (r ≤ s and s ≤ t ⇒
r ≤ t) and total (s ≤ t or t ≤ s for all t ∈ T).
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As usual, s < t means s ≤ t and s �= t, s > t means t < s, and so on. The
open, close and half-open intervals of T are defined by

[r, s] = {t ∈ T : r ≤ t ≤ s},
]r, s[ = {t ∈ T : r < t < s},
]r, s] = {t ∈ T : r < t ≤ s}, [r, s[ = {t ∈ T : r ≤ t < s}.

The order topology is generated by the open intervals of T. An open interval of T

containing t ∈ T is called neighborhood of t.
Axiom 2 (Conditionally complete chain) Each nonempty subset of T,

which is bounded above, has a least upper bound (supremum).
Consequently, each nonempty subset of T, which is bounded below, has a great-

est lower bound (infimum).
The forward and backward jump operators are mappings σ, ρ : T → T defined

by
σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}.

Via these two operators, points in T can be classified with respect to their right
and left order neighborhood: t ∈ T is called right-dense, right-scattered, left-dense
or left-scattered, if σ(t) = t, σ(t) > t, ρ(t) = t or ρ(t) < t, respectively; t ∈ T is
called dense if it is right-dense or left-dense.
Axiom 3 (Growth calibration) There exists a mapping µ : T×T→ R with

the following properties

– (Cocycle property) For all r, s, t ∈ T we have µ(r, s) + µ(s, t) = µ(r, t).
– (Strong isotony) For all r, s ∈ T we have the implication r > s⇒ µ(r, s) > 0.
– (Continuity) µ is continuous with respect to the product order topology.

The function d(r, s) := |µ(r, s)| is a metric on T which generates the order topology.
Because of the conditionally completeness with respect to the ordering, T is also
complete with respect to the metric.

The graininess function µ∗ : T→ {x ∈ R : x ≥ 0} is defined as

µ∗(t) = µ(σ(t), t).

Any closed subset of R with the natural ordering and with growth calibration
µ defined by µ(r, s) = r − s is an example for a measure chain; it is called a time
scale. If T = R, then σ(t) = ρ(t) = t and µ∗(t) = 0 for each t ∈ T; if T = Z, then
σ(t) = t+ 1, ρ(t) = t− 1 and µ∗(t) = 1 for each t ∈ T. It is remarkable that there
is no algebraic structure (e.g. group or ring structure) on T.

A function f : T → R is called rd-continuous (right-dense-continuous), if it is
continuous in each right dense instant and has a left-sided limit in each instant of
T, which is at the same time right-scattered and left dense.

A function f : T → R is called regressive provided 1 + µ∗(t)f(t) �= 0 for all

t ∈ Tκ =

{
T \ {m}, if T has a left-scattered maximum m

T, otherwise
.
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In the subsequent text, for function f : T→ R, we will abbreviate f ◦ σ by fσ.
A function f : T → R is called (delta) differentiable at t ∈ T, with (delta)

derivative f∆(t) ∈ R, if for each ε ∈ R, ε > 0, there is a neighborhood Ω of t such
that ∣∣fσ(t)− f(s)− f∆(t)µ(σ(t), s)∣∣ ≤ ε|µ(σ(t), s)|
for all s ∈ Ω. It follows that

fσ(t) = f(t) + µ∗(t)f∆(t) (5)

for each t ∈ T where the derivative exists, see e.g. [3, Theorem 1.2.2]. Let f, g :
T → R be functions, which are differentiable at t ∈ T and let c ∈ R. Then the
following hold

(cf(t))∆ = cf∆(t), (6)

(f(t)± g(t))∆ = f∆(t)± g∆(t), (7)

(f(t)g(t))∆ = f∆(t)g(t) + fσ(t)g∆(t), (8)

(
1
f(t)

)∆

= − f∆(t)
fσ(t)f(t)

if f(t) �= 0 �= fσ(t). (9)

Let τ ∈ Tκ. If g : Tκ → R is an rd-continuous function, then there exists
exactly one function f : T → R with the properties:

f∆(t) = g(t) for all t ∈ T and f(τ) = 0,

see e.g. [3, Theorem 1.4.4]. According to the corresponding notation in real analysis
we write

t∫
τ

g(s)∆s = f(t).

Applying (5), we obtain the useful formula

t∫
τ

g(s)∆s =

σ(t)∫
τ

g(s)∆s− µ∗(t)g(t). (10)

The basic concepts concerning measure chains and the two important special
cases of it — i.e. the sets of reals R and integers Z — are summarized in table 1.

Example 1. Let {ak}∞k=0 be an increasing sequence of reals and let {dk}∞k=1 be
a sequence of positive reals. Let T = {(k, τ) ∈ N0 × R : ak ≤ τ ≤ ak+1}. Let us
define the lexicographic ordering on T, i.e.

(k, ξ) ≤ (l, η) ⇔ k < l or (k = l and ξ ≤ η)



Logistic Equation on Measure Chains 343

general T T = R T = Z

forward jump operator σ(t) t t+ 1

backward jump operator ρ(t) t t− 1

growth calibration µ(r, s) r − s r − s
graininess function µ∗(t) 0 1

“shift” fσ(t) f(t) f(t+ 1)

rd-continuous f continuous f any f

regressive f any f f(t) �= −1
derivative f∆(t) f ′(t) ∆f(t) = f(t+ 1)− f(t)
integral

t∫
τ

f(s)∆s
t∫

τ

f(s)ds
t−1∑
k=τ

f(k)

Table 1. Two most important special cases of measure chains

and a mapping µ : T × T → R as µ ((k, ξ), (l, η)) = ξ − η +
k∑

i=l+1

di (we use the

convention:
m∑
i=n

αi = −
n−1∑

i=m+1

αi for m < n − 1 and
n−1∑
i=n

αi = 0). Then T is a

measure chain with growth calibration µ. The forward jump operator σ and the
graininess function µ∗ are given by

σ(k, τ) =

(k, τ), if τ �= ak+1

(k + 1, ak+1), if τ = ak+1

, µ∗(k, t) =

0, if τ �= ak+1

dk+1, if τ = ak+1

.

This measure chain can underlay a model of a process whose continuous evo-
lution is usually interrupted by an event (impulse, catastrophe etc.) of “size” di
at time instants ai, i = 1, 2, . . . . In such a case, (k, τ) denotes a time instant with
“absolute time distance” τ from beginning a0 after k occurrences of the inter-
rupting events. (This example was introduced in [7], but it contained an awkward
misprint in the graininess function there.)

Let f : T→ R be a function. Then

f∆(k, τ) =

∂f(k, τ)/∂τ , if τ �= aka+1 and ∂f(k, τ)/∂τ exists

[f(k + 1, τ)− f(k, τ)] /dk+1, if τ = ak+1,

(k,τ)∫
(0,a0)

f(l, s)∆(l, s) =
k−1∑
i=0

ai+1∫
ai

f(i, σ)dσ +

τ∫
ak

f(i, σ)dσ +
[τ ]∑
i=1

di+1f(i, ai+1).

A dynamic equation is an equation of the form x∆ = f(t, x), where the mapping
f : T× R → R. Let p : T→ R. The dynamic equation

x∆ = p(t)x (11)
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is called a (first order) linear (dynamic) equation. If function p is regressive and
rd-continuous, then the initial value problem (11), x(t0) = x0 admits exactly one
solution, see e.g. [1, Theorems 2.33, 2.35].

Let p : T → R be an rd-continuous regressive function. The (generalized)
exponential function ep(t, τ) is defined to be the unique solution of the initial
value problem

x∆ = p(t)x, x(τ) = 1.

Clearly, the derivative of the exponential function is given by

e∆p (t, τ) = p(t)ep(t, τ). (12)

If T = R, p ≡ 1 and τ = 0, then the solution of initial value problem x′ = x,
x(0) = 1 is x(t) = exp(t). This observation justifies the terminology. If T = R, p
is arbitrary continuous function and τ = R, then

ep(t, τ) = exp

t∫
τ

p(s)ds.

Example 2. Let T be the time scale introduced in Example 1 and suppose that
the sequence {dk}∞k=1 is bounded above, i.e. d̃ = inf {1/dk : k = 1, 2, . . .} > 0.
Further, let β > 0, δ ∈]0, d̃[ and put

r(k, τ) =

β, if τ �= ak+1

−δ, if τ = ak+1

.

Then the function r is rd-continuous and regressive. Now, one can easily verify
that

er
(
(k, τ), (0, a0)

)
=
(
exp(−βa0)− δ

k∑
i=1

di exp(−βai)
)
exp(βτ).

In particular, if ai = i for i ∈ N0 and di = 1 for i ∈ N then

er
(
(k, τ), (0, 0)

)
=
(
1 + δ

1− exp(−βk)
1− exp(β)

)
exp(βτ).

3 The equation

The initial value problem for the nonautonomous logistic ordinary differential
equation

x′ = r(t)x
(
1− x

K(t)

)
, x(t0) = x0

has the solution

x(t) = x0

exp
t∫
t0

r(τ)dτ

1 + x0
t∫
t0

r(τ)
K(τ) exp

( τ∫
t0

r(s)ds
)
dτ
.
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Consequently, a dynamic equation possessing the Verhulst equation (1) as a par-
ticular case, should have the solution

x(t) = x0
er(t, t0)

1 + x0
t∫
t0

r(τ)
K(τ)er(τ, t0)∆τ

. (13)

By (6)–(9) and (12) the delta derivative of the previous equality is

x∆(t) = x0

e∆r (t, t0)
(
1 + x0

t∫
t0

r(τ)
K(τ)er(τ, t0)∆τ

)
− er(t, t0)x0

r(t)
K(t)er(t, t0)(

1 + x0
t∫
t0

r(τ)
K(τ)er(τ, t0)∆τ

)(
1 + x0

σ(t)∫
t0

r(τ)
K(τ)er(τ, t0)∆τ

) =

= x0

er(t, t0)
[
r(t)

(
1 + x0

t∫
t0

r(τ)
K(τ)er(τ, t0)∆τ

)
− x0 r(t)

K(t)er(t, t0)
]

(
1 + x0

t∫
t0

r(τ)
K(τ)er(τ, t0)∆τ

)(
1 + x0

σ(t)∫
t0

r(τ)
K(τ)er(τ, t0)∆τ

) =

= x(t)
r(t)

(
1 + x0

t∫
t0

r(τ)
K(τ)er(τ, t0)∆τ −

x0
K(t)er(t, t0)

)
(
1 + x0

σ(t)∫
t0

r(τ)
K(τ)er(τ, t0)∆τ

)
Now, formulae (10), (12) and (5) yield

x∆(t) = r(t)x(t)

1−
x0µ

∗(t) r(t)
K(t)er(t, t0) +

x0
K(t)er(t, t0)

1 + x0
σ(t)∫
t0

r(τ)
K(τ)er(τ, t0)∆τ

 =

= r(t)x(t)

1− x0
K(t)

µ∗(t)e∆r (t, t0) + er(t, t0)

1 + x0
σ(t)∫
t0

r(τ)
K(τ)er(τ, t0)∆τ

 =

= r(t)x(t)

1− x0
K(t)

eσr (t, t0)

1 + x0
σ(t)∫
t0

r(τ)
K(τ)er(τ, t0)∆τ

 =

= r(t)x(t)
(
1− xσ(t)

K(t)

)
= r(t)x(t)

(
1− x(t) + µ∗(t)x∆(t)

K(t)

)
=

= r(t)x(t)
(
1− x(t)

K(t)

)
− µ∗(t)r(t)x(t)

K(t)
x∆(t).
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Consequently,

x∆ =
r(t)x

(
1− 1

K(t)
x

)
1 + µ∗(t)

r(t)
K(t)

x

. (14)

Hence, the dynamic equation possessing the solution given by (13) has the form
(14).

If T = R then µ∗(t) = 0, x∆ = x′ and we get the equation

x′ = r(t)x
(
1− 1

K(t)
x

)
.

If T = Z then µ∗(t) = 1, x∆ = x(t + 1) − x(t). Denoting as usual, xk = x(k),
rk = r(k), Kk = K(k), we get the equation

xk+1 =
rkxk

(
1− 1

Kk
xk

)
1 +

rk
Kk

xk
+ xk =

(1 + rk)xk

1 +
rk
Kk

xk
.

The obtained results show that the Verhulst (1) and the Pielou (4) logistic equa-
tions are particular cases of dynamic equation (14).

Remark 3. The fact that the equations (1) and (4) are in certain sense the same
is not striking at all. The both equations are Riccati ones.

Example 4. Let T be the time scale introduced in Example 1 with a0 = 0, ai = i,
di = 1 for each i ∈ N,

r(k, τ) =

β, τ �= k + 1

−δ, τ = k + 1,
where β > 0, δ ∈ [0, 1[.

The initial value problem

x∆ =
r(k, τ)x(1 − x)

1 + µ∗(k, τ)r(k, τ)x
, x(0, 0) = x0 ∈]0, 1[

can serve to model an evolution of population with intrinsic growth rate β which
is regularly exterminated by a chemical compound of efficiency δ. Its solution can
be evaluated using the results of Examples 1 and 2.
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