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Abstract. The question of uniformly stabilizing the solution of the Schrödinger
equation yt − i∆y = 0 in Ω × (0,∞) (Ω is a bounded domain of Rn) sub-

ject to boundary conditions y = 0 on Γ0 × (0,∞) and
∂y

∂ν
= F (y, yt)

on Γ1 × (0,∞),(Γ0, Γ1) being a partition of the boundary, is studied. We
shall show that if {Ω,Γ0, Γ1} is almost star-shaped, then a suitable choice
of F leads to exponential energy decay. Moreover exponential decay rate
estimates will be obtained. The approach adopted is based on multipliers
technique.

MSC 2000. 35B45, 35J10, 35B05, 93C20, 93D15
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1 Introduction

Let Ω be an open bounded domain in Rn with sufficiently smooth boundary Γ .
Assume that Γ consists of two parts Γ0 and Γ1satisfying

Γ0 ∩ Γ1 = ∅ (1)

We set Q = Ω × (0,+∞), Σ0 = Γ0 × (0,+∞), Σ1 = Γ1 × (0,+∞). Let a and l
be two nonnegative functions of class C1such that

Γ0 �= ∅ or a �= 0 (2)

This is the preliminary version of the paper.

mailto:rebiai@hotmail.com


350 S.-E. Rebiai

Consider the problem

yt − i∆y = 0 in Q (3)

y(x, 0) = y0 in Ω (4)

y = 0 on Σ0 (5)
∂y

∂ν
+ ay + lyt = 0 on Σ1 (6)

where yt =
dy

dt
and ν is the unit normal of Γ pointing towards the exterior of

Ω. The natural space for initial data is

V =
{
ϕ ∈ H1(Ω) : ϕ = 0 on Γ0

}
When Γ0 has non-empty interior in Γ, by Poincaré’s inequality, we have

‖ϕ‖L2(Ω) ≤ β ‖∇ϕ‖(L2(Ω))n , ∀ϕ ∈ V (7)

In view of this inequality, we shall consider in V the norm induced by the inner
product

(ϕ, ψ)V = G
∫
Ω ∇ϕ.∇ψdΩ

Associated with each solution of (3)–(6) is its total energy at time t;

E(t) =
∫
Ω |∇y|

2
dΩ +

∫
Γ1
a |y|2 dΓ

A simple calculation shows, at least formally, that

d
dtE(t) = −

∫
Γ1
l |yt|2 dΓ ≤ 0

hence E(t) is nonincreasing.

The question we are interested in is the following: under what conditions can
we establish the exponential decay of the energy and if possible obtain explicit
decay rate estimates. An affirmative answer to the above question has been given
by Machtyngier and Zuazua [3] under the following assumptions:

(H1)- {Ω,Γ0, Γ1} is “star-complemented-star-shaped”, scss for short (see [1]).
This means that there exists a point x0 ∈ Rn such that

-(x− x0).ν(x) ≤ 0 on Γ0 (Γ0 is star-complemented with respect to x0)

-(x− x0).ν(x) ≥ 0 on Γ1 (Γ1 is star-shaped with respect to x0)

(H2)- a ≡ 0 and l = (x− x0).ν(x)
The aim of this paper is to extend the result of Machtyngier and Zuazua, in

two ways: first by replacing the scss domains by a larger class of domains known
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as almost star shaped domains, second by replacing the boundary feedback (H2)
by a more general one with a �= 0.

The rest of the paper is organized as follows. In Section 2, we recall the notion
of almost star-shaped domains. In Section 3, we state and prove the boundary
stabilization theorem.

2 Almost star-shaped domains

Definition 1. {Ω,Γ0, Γ1} is an almost star-shaped domain if there exists ϕ ∈
C2(Ω) such that

∆ϕ = 1 in Ω (8)

λ1(ϕ) = Inf {λ1(x), x ∈ Ω} > 0 (9)
∂ϕ

∂ν
≤ 0 on Γ0 (10)

∂ϕ

∂ν
≥ 0 on Γ1 (11)

where λ1(x) is the smallest eigenvalue of the real symmetric squared matrix
D2ϕ(x).

The simplest example is the case where {Ω,Γ0, Γ1} is a scss domain. The
function ϕ is then given by

ϕ(x) = 1
2n |x− x0|

2

Remark 2. We refer to [4] and [5] for other examples and further details.

3 The boundary stabilization theorem

We first state the following existence and regularity theorem for the system (3)–(6)

Theorem 3. Assume (1) and (2).
1- Given y0 ∈ V, the problem (3)–(6) has a unique weak solution

y ∈ C((0,+∞), V ) ∩C1((0,+∞), L2(Ω))

2- If y0 satisfies the stronger conditions

y0 ∈ H2(Ω) ∩ V (12)
∂y0
∂ν

+ ay0 + il∆y0 = 0 on Γ1 (13)
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Then the solution y has the stronger regularity property

y ∈ L∞((0,+∞), H2(Ω)), yt ∈ L∞((0,+∞), V )

To prove this theorem, semigroups approach can be adopted (see [2]). Our main
result is as follows.

Theorem 4. Let {Ω,Γ0, Γ1} be an almost star shaped-domain, and choose

a =
1

8 ‖∇ϕ‖2∞

∂ϕ

∂ν
and l =

√
2
3
∂ϕ

∂ν
(14)

Then for every y0 ∈ V, the energy corresponding to the weak solution of (3)–(6)
satisfies the estimate

∀t ≥ 0, E(t) ≤ E(0)e1−ωt with ω =
λ1(ϕ)

(
√
6 ‖∇ϕ‖∞ + β) ‖∇ϕ‖∞

This theorem will be only proved for smooth initial data. The general case
follows by a standard density argument. To proceed the following preliminary
results are needed.

Lemma 5. Given y0 verifying (12)–(13). Then the strong solution of (3)–(6) sat-
isfies

∀0 ≤ S ≤ T < +∞, E(S)− E(T ) =
∫
Σ1

l |yt|2 dΣ (15)

Proof. We multiply both sides of (3) by yt and we integrate by parts over Ω We
obtain

0 =
∫
Ω

(yt − i∆y)ytdΩ

=
∫
Ω

(|yt|2 − iyt∆y)dΩ

=
∫
Ω

|yt|2 dΩ + i

∫
Ω

∇y.∇ytdΩ + i

∫
Γ1

(ayyt + l |yt|2)dΣ

It follows that

G(
∫
Ω

∇y.∇ytdΩ +
∫
Γ1

ayytdΣ) = −
∫
Γ1

l |yt|2 dΣ

But the left-hand side of the above equality is precisely
d

dt
E(t). Hence the desired

result.
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Lemma 6. Given 0 ≤ S < T. Then the following identity holds true for any
strong solution of (3)–(6):

−2
∫
Σ1

(ay + lyt)∇ϕ.∇ydΣ −G
∫
Σ1

(|∇y|2 + iyyt)
∂ϕ

∂ν
dΣ −

G
∫
Σ1

(ay + lyt)ydΣ +
∫
Σ0

∣∣∣∣∂y∂ν
∣∣∣∣ ∂ϕ∂ν dΣ = LX + 2G

∫
Q

(D2ϕ∇y).∇ydQ

(16)

where

X =
[∫

Ω

y∇ϕ.∇ydΩ
]T
S

Proof. (i)- We multiply both sides of (3) by ∇ϕ.∇y and integrate over Q. We
obtain the following identity (see the Appendix):

2G
∫
Σ

∂y

∂ν
∇ϕ.∇ydΣ −

∫
Σ

|∇y|2 ∂ϕ
∂ν

+ L
∫
Σ

yyt
∂ϕ

∂ν
dΣ +

G
∫
Σ

∂y

∂ν
y∆ϕdΣ = LX + 2G

∫
Q

(D2ϕ∇y)∇ydQ (17)

(ii)- We now use the boundary conditions (5) and (6). Thus

On Γ0 : y = yt = 0; |∇y| =
∣∣∣∣∂y∂ν

∣∣∣∣ ;∇ϕ.∇y = (∇ϕ.ν)∂y
∂ν

(18)

Therefore using (6) and (18) in the left-hand side of(17), we find the sought- after
identity for y satisfying (3)–(6).

Lemma 7. Assume that a and l are defined by (14). Then for any initial data
verifying (12) and (13), we have:∫

Σ0

(
∂y

∂ν
)2
∂ϕ

∂ν
− 2G

∫
Σ1

(ay + lyt)∇ϕ.∇ydΣ −
∫
Σ1

(|∇y|2 + iyyt)
∂ϕ

∂ν
dΣ −

G
∫
Σ1

(ay + lyt)ydΣ ≤ 4
√
6 ‖∇ϕ‖2∞ (E(S)− E(T ))− 1

4

∫
Σ1

a |y|2 dΣ (19)

Proof. Set α =
1

8 ‖∇ϕ‖2∞
and λ =

√
2
3

Then
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−2G(ay + lyt)∇ϕ.∇y − |∇y|2
∂ϕ

∂ν
−G(iyyt

∂ϕ

∂ν
)− a |y|2 −G(lyyt)

≤ ∂ϕ

∂ν

[
2 ‖∇ϕ‖2∞ (α2 |y|2 + λ2 |yt|2) + |∇y|2

]
− ∂ϕ

∂ν
|∇y|2 +

λ2 + 1
2α

∂ϕ

∂ν
|yt|2 +

α

2
∂ϕ

∂ν
|y|2 ≤ ∂ϕ

∂ν

[
2 ‖∇ϕ‖2∞ λ2 +

λ2 + 1
2α

]
|yt|2 +

∂ϕ

∂ν

[
2 ‖∇ϕ‖2∞ α− 1

2

]
α |y|2

The estimate (19) follows now from the particular choice of the coefficients α and
λ given by (14), from the identity (15) and (8)–(11).

Lemma 8.
|X | ≤ 2βE(S)

Proof. Using (7), we have

∣∣∣∣∫
Ω

y∇ϕ.∇ydΩ
∣∣∣∣ ≤ ‖y(t)‖L2(Ω) ‖∇ϕ.∇y(t)‖L2(Ω)

≤ β ‖∇ϕ‖∞ ‖y(t)‖
2
V

Thus

|X | ≤ 2β ‖∇ϕ‖∞E(S)

4 Proof of Theorem 4

Applying Lemmas 7 and 8, we deduce from the identity (16), the inequality

2G
∫
Q

(D2ϕ∇y).∇ydQ ≤ (4
√
6 ‖∇ϕ‖2∞ + 2β ‖∇ϕ‖∞)E(S) +

1
4

∫
Σ1

a |y|2 dΣ

Using (9), we get

2λ1(ϕ)
∫ T

S

E(t)dt ≤ (4
√
6 ‖∇ϕ‖2∞ + 2β ‖∇ϕ‖∞)E(S)

Letting T → +∞, we obtain for every fixed S ∈ R+, the estimate∫ +∞

S

E(t)dt ≤ 1
ω
E(S)
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where

ω =
λ1(ϕ)

(
√
6 ‖∇ϕ‖∞ + β) ‖∇ϕ‖∞

The conclusion of the theorem follows by applying a Gronwall-type inequality as
in [2].

5 Appendix Proof of (17)

We multiply both sides of (3) by ∇ϕ.∇y and integrate by parts over Q.
Term yt∇ϕ.∇y
Integrating by parts in t and using the identity∫

Ω

h.∇ψdΩ =
∫
Γ

hψ.νdΓ −
∫
Ω

ψ∇hdΩ (A1)

we obtain

∫
Q

yt∇ϕ.∇ydQ =
[∫

Q

yt∇ϕ.∇ydΩ
]T
S

−
∫
Σ

yyt∇ϕ.νdΣ−

i

∫
Q

∆y∇ϕ.∇ydQ − i
∫
Q

y∆y∆ϕdQ (A2)

Adding −i
∫
Q
∆y∇ϕ.∇ydQ to both sides of (A2) yields

2G
∫
Q

∆y∇ϕ.∇ydQ = LX −L
∫
Σ

yyt∇ϕ.νdΣ −G
∫
Q

y∆y∆ϕdQ (A3)

Term
∫
Q
y∆y∆ϕdQ

Using Green’s first theorem and the identity (20), we find∫
Q

y∆y∆ϕdQ =
∫
Σ

∂y

∂ν
y∆ϕdΣ −

∫
Q

|∇y|2∆ϕdQ−
∫
Q

y∇y.∇(∆ϕ)dQ (A4)

Term
∫
Q
∆y∇ϕ.∇ydQ

We use Green’s first theorem and the identity (20). We obtain∫
Q

∆y∇ϕ.∇ydQ =
∫
Σ

∂y

∂ν
∇ϕ.∇ydΣ −

∫
Q

(D2ϕ∇y).∇ydQ−

1
2

∫
Σ

|∇y|2∇ϕ.νdΣ +
1
2

∫
Q

|∇y|2∆ϕdQ (A5)

Inserting (A4) and (A5) into (A3), results in (17).
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