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Abstract. Our study deals with the non-unique behaviour of the almost-
unidirectional flow of compressible inviscid gases. This phenomenon is not
unknown to engineers who deal with compressible flows in pipes, ducts,
tubes or nozzles of nontrivial geometries, however it is not easy to find an
exact mathematical analysis in the engineering literature. Our aim is to fill
this gap by providing a sufficient and exact mathematical insight into this
phenomenon based on the analysis and numerical solution of the quasi-
one-dimensional and three-dimensional compressible Euler equations. In
the former case, we show the non-uniqueness of solution analytically. Fur-
ther we mention some useful properties of sonic points which are a po-
tential source of the non-uniqueness. Finally, we illustrate the presence of
the nonuniqueness also in the three-dimensional model, using an axisym-
metric finite volume scheme. Both analytical and numerical examples are
presented.
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1 Introduction

The question of uniqueness of the exact as well as numerical solution is always very
important if a nonlinear problem is solved. The theory of almost unidirectional
inviscid flow of perfect gases in tubes, ducts, pipes and nozzles is undoubtedly a
relatively well-explored discipline (see e.g. [3,4,5,7,6,9,12,14,15]), which deserves a
permanent industrial attention. Nevertheless, only a surprisingly few remarks can
be found in the literature on the non-unique behavior that these flows can exhibit
at sonic and transonic regimes in nontrivial axisymmetric geometries. It is our
aim to provide some analytical and numerical insight into this phenomenon in the
present paper, which is based on the article [10].

As compared with [10], we are more brief concerning the derivation of the
model, the recursive algorithm for the construction of all exact solutions to our
problem and the axi-symmetric finite volume method. On the other hand, we
explain in more detail the analytical example where non-uniqueness of the sta-
tionary quasi-one-dimensional compressible Euler equations is rooted because this
is a source of non-unique behaviour of almost-unidirectional flow of gases, which
can be observed also in more dimensions.

2 Quasi-one-dimensional model

In this section we will analyze a basic model of almost unidirectional inviscid
compressible flow, which at the same time offers a sufficiently complex description
of the flow and is sufficiently transparent to have an analytical solution. Obviously,
for real-life industrial simulations, advanced quasi-one-dimensional models (such
as, e.g., the Fanno model discussed in [4,5,6,9] including wall drag and turbulence
effects are recommended.

Let us consider a bounded interval I = [xa, xb] ⊂ (−∞, ∞), real constants
0 < Rmin ≤ Rmax and a bounded real function r(x) : I → [Rmin, Rmax] describing
the radius of an axisymmetric pipe or nozzle. For simplicity, we suppose that
r(x) is once continuously differentiable in (xa, xb) and continuous in I, but the
results presented in this paper are valid also for r(x) continuous and only piecewise
smooth. We define a varying cross-section a(x) = πr2(x) for x ∈ I.

We consider the standard stationary quasi-one-dimensional compressible Euler
equations for perfect gases (see, e.g., [3,4,7,10,12,14,15]). Due to their hyperbolicity
and the assumed smoothness of the radius r, discontinuous but piecewise smooth
solutions can be expected. Along the smooth parts of the solutions, the partial
differential equations can be rewritten into the following system of three non-linear
algebraic equations

a(x)`(x)u(x) = m, (1)

κp(x)
(κ− 1)`(x)

+
1
2
u2(x) = h, (2)
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p(x)
`κ(x)

= s (3)

expressing the conservation of mass m, enthalpy h and entropy S (where S =
cvlns+ const., cv being the specific heat of the gas), respectively. Here `(x), u(x),
p(x), e(x) mean the density, velocity, pressure and total energy density, respec-
tively, and κ ∈ (1, 3) is a real constant. Derivation of (1) and (2) is straightforward,
and a detailed derivation of (3) and further properties of the entropy S can be
found, e.g., in [1,3,4,5,7,9,15].

In the quasi-one-dimensional case, all discontinuities are necessarily shocks (si-
multaneous discontinuities in all `, u and p) as contact discontinuities are not
relevant (see, e.g., [15]). Rankine-Hugoniot conditions, which can be derived from
the weak formulation of the compressible Euler equations, imply that m,h are
conserved also at shocks (see, e.g., [15]). It is known that the entropy S is not
conserved at shocks where it rises discontinuously obeying the Rankine-Hugoniot
relation

p(x+) = p(x−)
2κM(x−)2 − κ+ 1

κ+ 1
. (4)

Here x ∈ I and p(x+), p(x−), M(x−) mean the downstream pressure limit and
upstream pressure and Mach number limits at the shock, respectively.

For the sake of completeness, let us recall the speed of sound c(x) and the Mach
number M(x) defined by

c(x) =
√
κp(x)/`(x), M(x) = |u(x)|/c(x), (5)

respectively. Flow is called subsonic where M(x) < 1, sonic where M(x) = 1 and
isentropic where the quantity s from (3) is conserved.

Lemma 1. In inviscid compressible flow, shocks cannot occur in subsonic or
sonic flow regions. Flow leaves a shock always at subsonic regime. The entropy
S and the quantity s defined in (3) are discontinuous at shocks and always in-
creasing with respect to the flow direction. Both of these quantities stay conserved
except for shocks.

Proof. See any basic book on fluid mechanics, e.g. [1].

Almost always we are interested in a subsonic inlet. These considerations lead
us to a mathematically exact formulation of the problem of our interest:

Problem 2. Let I, r, a be as described above. Consider boundary data `a > 0,
ua > 0, pa > 0 such that Ma = ua/

√
κpa/`a ≤ 1, and pb such that pa ≥ pb > 0.

Let us put m = a(xa)`aua, h = κpa/((κ − 1)`a) + u2a/2 according to (1), (2),
respectively. For a finite set D ⊂ (xa, xb) (corresponding to shocks), partitioning
(xa, xb) into a finite number of non-overlapping open intervals I1, I2, . . . , Id (or-
dered from the left to the right), we consider a sequence of constants pa/`κa = s1 <
s2 < . . . < sd. The set D and real functions `, u, p defined in I \D are sought such
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that
1. `, u, p are bounded, positive and smooth in I \ D;
2. `, u, p satisfy (1), (2) in I \ D with the constants m,h, respectively;
3. `, p satisfy (3) in I \ D with p/`κ = sk in Ik for all 1 ≤ k ≤ d;
4. `, u, p satisfy (4) at all x ∈ D;
5. `(xa) = `a, u(xa) = ua, p(xa) = pa, p(xb) = pb.

Remark 3. If Problem 2 has a solution, the value of ua is determined (except for a
few degenerate situations) by `a, pa and pb as described, e.g., in [3,12]. Despite the
fact that the prescription of ua seems to be an unnecessary additional restricting
condition, it allows us not to deal with its computation here and improves the
clarity of further considerations.

In the next section, we are going to present a simple problem where the non-
uniqueness of solution can be shown analytically in a constructive way.

3 Example of a problem with a non-unique solution

Lemma 4. If Problem 2 has a solution `, u, p, there is a unique pair of values
`b, ub > 0 such that `(xb) = `b, u(xb) = ub. If pb = pa it is `b = `a, ub = ua.

Proof. Let us assume that a solution to Problem 2 exists. Equations (1), (2),
expressing the conservation of m,h in I \D, yield a quadratic equation for u(xb) =
ub. It is easy to see that this equation has always one positive and one negative
root. The negative one is meaningless with respect to (1). Relation (1) yields also
the density `b. The rest is easy to see.

Theorem 5. Let the radius r be as described in Section 2 and moreover satisfy
r(xa) = r(xb) = r0 > 0, r(x) > r0 for all x ∈ (xa, xb). Let the boundary data of
Problem 2 satisfy Ma = ua/

√
κpa/`a = 1, pb = pa. Then, Problem 2 has exactly

two solutions in I, both of them smooth in (xa, xb).

Proof. According to Lemma 4, a solution of Problem 2 must satisfy `(xb) = `a.
As pa/`κa = p(xb)/`κ(xb), Lemma 1 yields that D = ∅. Thus, relation (4) is not
relevant. Putting (1) and (3) into (2), we obtain

κs

κ− 1
`κ−1(x) +

m2

2a2(x)`2(x)
− h = 0 (6)

for all x ∈ I. For an x ∈ I, equation (6) can be written in the form

fρ(`(x)) = 0, (7)

with the implicit function

fρ(ξ) =
κs

κ− 1
ξκ−1 +

m2

2a2(x)ξ2
− h (8)
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Fig. 1. Function fρ; situations A) with no real root, B) exactly one real root, C)
two different real roots.

defined for all ξ ∈ (0,∞). The function fρ depicted in the Fig. 1

is smooth and achieves its only minimum at ξmin =
(
m2/(κa2s)

) 1
κ+1 . The deriva-

tive f
′
ρ is negative in (0, ξmin) and positive in (ξmin,∞). It is fρ(ξmin) = 0 both

for xa and xb. For all x ∈ I, the value of fρ(ξmin) is a decreasing function
of the cross-section a(x). Thus, the equation (7) has exactly one positive root
`1(x) = `2(x) = `a for x = xa, exactly two positive roots 0 < `1(x) < `2(x)
for all x ∈ (xa, xb) and exactly one positive root `1(x) = `2(x) = `a for x = xb.
The implicit function theorem immediately yields that the functions `1(x), `2(x)
are smooth in (xa, xb). Putting the solutions `1(x), `2(x) into the equation (1), we
obtain two different positive smooth solutions u1(x), u2(x) for the velocity. Finally,
using (3), we obtain the corresponding solutions p1(x), p2(x) for pressure.

3.1 Properties of sonic points

As we have seen in the previous paragraph, sonic points (points x ∈ I such that
M(x) = 1) play an important role in the existence of non-unique solutions to
Problem 2. It is our aim to mention some of their further useful properties in this
paragraph.

Lemma 6. Let D, `, u, p solve Problem 2. Let x ∈ I \D such that M(x) = 1. Then
the solution of Problem 2 at x has the unique form

u(x) =
(
2h(κ− 1)
κ+ 1

)1/2

, `(x) =
m

a(x)u(x)
, p(x) =

(κ− 1)`(x)
[
h− u2(x)/2

]
κ

.

(9)

Proof. Immediately from (1), (2) using (5).

Lemma 7. Let D, `, u, p solve Problem 2. Let x1, x2 ∈ I \ D, x1 < x2, M(x1) =
M(x2) = 1 and a(x1) = a(x2). Then `, u, p are continuous in [x1, x2].

Proof. Using Lemma 6 with a(x1) = a(x2), we obtain `(x1) = `(x2), p(x1) =
p(x2). Thus, p(x1)/`κ(x1) = p(x2)/`κ(x2). Lemma 1 implies the continuity of
`, u, p in [x1, x2]. This obviously means that there is no x̃ ∈ D, x1 < x̃ < x2.
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Lemma 8. Let D, `, u, p solve Problem 2. Let x1, x2 ∈ I \ D, x1 < x2, M(x1) =
M(x2) = 1 and a(x1) �= a(x2). Then none of `, u, p can be continuous in [x1, x2].
Moreover, necessarily it is a(x1) < a(x2).

Proof. Lemma 6 with a(x1) �= a(x2) yields that `(x1) �= `(x2), p(x1) �= p(x2).
This and conservation of m,h in I \ D yield that p(x1)/`κ(x1) �= p(x2)/`κ(x2).
Lemma 1 implies that p(x1)/`κ(x1) < p(x2)/`κ(x2). Relation (9) yields that this
is only possible if a(x1) < a(x2).

Lemma 9. Let D, `, u, p solve Problem 2. Let x1, x2 ∈ I \ D, x1 < x2, and let
`, u, p be continuous in [x1, x2].
a) If M(x1) < 1 and r(x) is decreasing in [x1, x2] then M(x) is increasing in
[x1, x2], but the relation M(x) < 1 is preserved in [x1, x2).
b) If M(x1) < 1 and r(x) is increasing in [x1, x2] then M(x) is decreasing in
[x1, x2], and obviously M(x) < 1 in [x1, x2].
c) If M(x1) > 1 and r(x) is decreasing in [x1, x2] then M(x) is decreasing in
[x1, x2], but the relation M(x) > 1 is preserved in [x1, x2).
d) If M(x1) > 1 and r(x) is increasing in [x1, x2] then M(x) is increasing in
[x1, x2], and obviously M(x) > 1 in [x1, x2].

Proof. We put s1 = p(x1)/`κ(x1). Let x ∈ (x1, x2). For `, u, p continuous, relations
(1), (2) and (3) with (5) yield

u2(x) =
2(κ− 1)h

2/M2(x) + κ− 1
, (10)

`(x) =
m

a(x)u(x)
, (11)

s1 =
aκ−1(x)(2(κ− 1)h)

κ+1
2

κmκ−1M2(x) [2/M2(x) + κ− 1]
κ+1
2

. (12)

Relation (12) can be written as

M2(x)
(
2/M2(x) + κ− 1

)κ+1
2 1
aκ−1(x)

=
(2(κ− 1)h)

κ+1
2

κmκ−1s1
= const. (13)

We consider (13) as an implicit function for the Mach number M . Analysis of the
shape of its solution (with respect to the monotone of r supposed in a) to d))
yields the monotone behavior ofM . This analysis also yields that in a) and c), the
existence of an x ∈ (x1, x2) such that M(x) = 1 is contradictory to (13).

Corollary 10. Without loss of generality, we can assume that M(xa) �= 1 in the
case that the radius r does not have a local minimum at xa (namely, using the
implicit function fP from the proof of Theorem 5, it can be shown that there would
be no solution to Problem 2). Thus, Lemma 9 excludes all possibilities for the
existence of sonic points except for such x ∈ I where the radius r achieves a local
minimum.
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Corollary 10 together with Lemma 6 will play an important role in the construction
of multiple solutions as we will be able to evaluate solution of Problem 2 at these
points in the pipe or nozzle a priori.

4 Example: a multiple nozzle

In this section we deal with non-unique solutions to Problem 2 corresponding to a
nontrivial function r. We present analytical results obtained with a recursive algo-
rithm described in [10] as well as numerical results obtained by a suitable axisym-
metric finite volume scheme for three-dimensional compressible Euler equations
derived in [10]. The function

r(x) =

{
− cos(10π(x−0.05))

50 + 0.0265, x ∈ [xa, 0.05],
− sin(10πx)

250 + x/100 + 1/100, x ∈ [0.05, xb]
(14)

is considered in the interval I given by xa = −0.05 m and xb = 0.75 m as shown
in Fig. 2.

Fig. 2. Geometry of the multiple nozzle.

Boundary conditions are chosen as pa = 60000 Pa, θa = 368.16 K (where θa is
the inlet temperature) and pb = 13000 Pa. Density `a is evaluated directly from
the perfect gas state equation. For this set of boundary data, the nozzle works in
the Laval regime with M(0.05) = 1 and the value of the subsonic inlet velocity is
computed as ua = 5.42 m/s.

The interval I is divided equidistantly into Nelem = 2000 finite volumes. In
Figures 3 to 6, we show four different analytical solutions to Problem 2. In Figures
7 to 10, steady state results of the corresponding axisymmetric computation are
shown. Let us remark that we need one more boundary condition at the subsonic
inlet in the axisymmetric case in comparison with the quasi-one-dimensional one.
The reason is that the number of incoming characteristics in the axisymmetric case
is greater. To be compatible with the quasi-one-dimensional case, we prescribe in
addition to an inlet density `a and pressure pa also zero radial component of the
subsonic inlet velocity ur = 0. In agreement with the quasi-one-dimensional case,
pressure pb is prescribed at the subsonic outlet. At last, we compare the analytical
results with the numerical ones (corresponding to axial cutlines of the axisym-
metric geometry) in Figures 11 to 14. Here analytical solutions are depicted by
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solid lines and the finite volume cutlines by dashed ones. A structured triangu-
lar grid with 12 000 finite volumes was used for the axisymmetric finite volume
computation.

4.1 Analytical quasi-1D solutions
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Fig. 3. Mach number, analytical solution with one shock.
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Fig. 4. Mach number, analytical solution with two shocks.
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Fig. 5. Mach number, analytical solution with three shocks.
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Fig. 6. Mach number, analytical solution with four shocks.
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4.2 Axi-symmetric finite volume solutions

Fig. 7. Mach number color map, FV solution with one shock.

Fig. 8. Mach number color map, FV solution with two shocks.

Fig. 9. Mach number color map, FV solution with three shocks.

Fig. 10. Mach number color map, FV solution with four shocks.
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4.3 Comparison of quasi-1D and axi-symmetric solutions
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Fig. 11. Mach number, analytical and FV solutions with one shock.
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Fig. 12. Mach number, analytical and FV solutions with two shocks.
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Fig. 13. Mach number, analytical and FV solutions with three shocks.

0
0.5

1
1.5

2
2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 14. Mach number, analytical and FV solutions with four shocks.
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