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Irregular boundary value problems for ordinary
differential equations
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Abstract. Birkhoff-irregular boundary value problems for quadratic ordi-
nary differential pencils of the second order have been considered. The spec-
tral parameter may appear in a boundary condition, the equation contains
an abstract linear operator while the boundary conditions contain internal
points of an interval and a linear functional. Isomorphism and coercive-
ness with a defect are proved for such problems. Two-fold completeness of
root functions of corresponding spectral problems is also established. As
an application of the obtained results, an initial boundary value problem
for second order parabolic equations is considered, and the well-posedness
and completeness of the elementary solutions are proved. These and some
other results have been published in [1] .
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1 Isomorphism and Two-fold Completeness

Consider a principally (because of the addition of B, T , and xji) boundary value
problem for ordinary differential equations

L(λ)u := λ2u(x) + λ [a1u′(x) + b1u(x)] + [a2u′′(x) + b2u
′(x)] +

+Bu|x = f(x), x ∈ (0, 1), (1)
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L1(λ)u := λ
[
α11u(0) + β11u(1) +

N0∑
i=1

η0iu(x0i)
]
+

+ [α10u′(0) + β10u
′(1) + γ10u(0) + δ10u(1)]+

+
N1∑
i=1

η1iu
′(x1i) +

N2∑
i=1

η2iu(x2i) + Tu = f1,

L2u := [α20u(0) + β20u(1)] +
N3∑
i=1

η3iu(x3i) = f2,

(2)

where ak, bk, ανk, βνk, γ10, δ10, ηji, fν are complex numbers, f(x) is a given
function; xji ∈ (0, 1); B is a linear operator in Lq(0, 1) and T is a linear functional
in Lq(0, 1), a real q ∈ (1,∞).

We assume that a2 �= 0 and denote by

ω1 :=
−a1 + (a21 − 4a2)

1
2

2a2
, ω2 :=

−a1 − (a21 − 4a2)
1
2

2a2

the roots of the equation
a2ω

2 + a1ω + 1 = 0,

where z
1
2 := |z| 12 ei arg z2 , −π < arg z ≤ π. We also assume that argω1 �= argω2.

Further,

ω := min{argω1, argω2 + π},
ω := max{argω1, argω2 + π},

and values argωj are chosen up to a multiple of 2π, so that ω − ω < π.
Introduce now the following notations:

θ0(ω1, ω2) :=

∣∣∣∣∣∣
α11 + α10ω1 β11 + β10ω2

α20 β20

∣∣∣∣∣∣ ,

θ1(ω1, ω2) :=

∣∣∣∣∣∣∣
−α10 b1+b2ω1

(a2
1−4a2)

1
2
+ γ10 β10

b1+b2ω2

(a2
1−4a2)

1
2
+ δ10

α20 β20

∣∣∣∣∣∣∣ .
Definition 1. Problem (1)—(2) is called regular (regular with defect 1) with re-
spect to the numbers ω1, ω2 if:

(1) a2 �= 0, argω1 �= argω2;
(2) xji ∈ (0, 1), for some real q ∈ (1,∞) the operator B fromW 1

q (0, 1) into Lq(0, 1)
is compact and the functional T is continuous in Lq(0, 1);

(3) θ0(ω1, ω2) �= 0
(
θ0(ω1, ω2) = 0, θ1(ω1, ω2) �= 0

)
.
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Theorem 2. Let problem (1)—(2) be regular with defect 1 with respect to the
numbers ω1, ω2.

Then for any ε > 0 there exists Rε > 0 such that for all complex numbers λ
that satisfy |λ| > Rε and lying inside the angle

π

2
− ω + ε < argλ <

3π
2
− ω − ε,

the operator
L(λ) : u→ L(λ)u := (L(λ)u, L1(λ)u, L2u)

from W 2
q (0, 1) onto Lq(0, 1) +̇ C2 is an isomorphism and for these λ the following

estimate holds for a solution u(x) of problem (1)—(2)

2∑
k=0

|λ|1−k‖u‖Wk
q (0,1)

≤ C(ε)
(
‖f‖Lq(0,1) +

2∑
ν=1

|λ|ν−
1
q |fν |

)
.

Theorem 3. Let |αν0|+|βν0| �= 0, ν = 1, 2 and let homogeneous problem (1)—(2)
be regular with defect 1 with respect to the numbers ω1, ω2 and regular, or regular
with defect 1 with respect to the numbers ω2, ω1, for q = 2.

Then the spectrum of homogeneous problem (1)—(2) is discrete and a system
of its root functions (eigenfunctions and associated functions) is two-fold complete
in the space

H := {v | v := (v1, v2) ∈W 1
2 (0, 1)⊕ L2(0, 1), L2v1 = 0}.

2 Well-posedness and Completeness of Elementary
Solutions

Consider, in [0, T ]× [0, 1], the following initial boundary value problem

ut(t, x) + [auxx(t, x) + bux(t, x)] +Bu(t, ·)|x = f(t, x), (3)

L1u := [α10u′x(t, 0) + β10u
′
x(t, 1)] + [γ10u(t, 0) + δ10u(t, 1)]+

+
N1∑
i=1

η1iu
′
x(t, x1i) +

N2∑
i=1

η2iu(t, x2i) +Qu(t, ·) = 0,

L2u := [α20u(t, 0) + β20u(t, 1)] +
N3∑
i=1

η3iu(t, x3i) = 0,

(4)

u(0, x) = u0(x). (5)

Let E,E1, and E2 be Banach spaces. Introduce two Banach spaces

Cµ((0, T ], E) := {f | f ∈ C((0, T ], E), ‖f‖ = sup
t∈(0,T ]

‖tµf(t)‖ <∞}, µ ≥ 0,
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Cγ
µ((0, T ], E) := {f | f ∈ C((0, T ], E), ‖f‖ = sup

t∈(0,T ]
‖tµf(t)‖ +

+ sup
0<t<t+h≤T

‖f(t+ h)− f(t)‖h−γtµ <∞}, µ ≥ 0, γ ∈ (0, 1],

and a linear space (in the case E1 ⊂ E2)

C1((0, T ], E1, E2) := {f | f ∈ C((0, T ], E1) ∩ C1((0, T ], E2)},

where C((0, T ], E) and C1((0, T ], E) are spaces of continuous and continuously
differentiable, respectively, vector-functions from (0, T ] into E.

Theorem 4. Let the following conditions be satisfied:

(1) a �= 0, | arg a| > π
2 , α10β20 + α20β10 = 0, γ10β20 − δ10α20 − b

aα10β20 �= 0;
(2) the operator B from W 1

q (0, 1) into Lq(0, 1) is compact;

(3) the functional Q is continuous in Lq(0, 1).
(4) f ∈ Cγ

µ((0, T ], Lq(0, 1)) for some γ ∈ (12 , 1] and µ ∈ [0, 12 );
(5) u0 ∈ W 2

q ((0, 1), Lνu = 0, ν = 1, 2).

Then problem (3)—(5) has a unique solution

u ∈ C([0, T ], Lq(0, 1)) ∩C1((0, T ],W 2
q (0, 1), Lq(0, 1))

and for the solution the following estimates hold

‖u(t, ·)‖Lq(0,1) ≤ C(‖u0‖W 2
q (0,1)

+ ‖f‖Cµ((0,t],Lq(0,1))),

and

‖u(t, ·)‖W 2
q (0,1)

+ ‖u′(t, ·)‖Lq(0,1) ≤ Ct−1(‖u0‖W 2
q (0,1)

+ ‖f‖Cγ
µ((0,t],Lq(0,1))),

for t ∈ (0, T ].

Consider now a spectral problem coresponding to the homogeneus (3), (4):

λu(x) + [au′′(x) + bu′(x)] +Bu|x = 0, x ∈ (0, 1), (6)

L1u := [α10u′(0) + β10u
′(1)] + [γ10u(0) + δ10u(1)]+

+
N1∑
i=1

η1iu
′(x1i) +

N2∑
i=1

η2iu(x2i) +Qu = 0,

L2u := [α20u(0) + β20u(1)] +
N3∑
i=1

η3iu(x3i) = 0,

(7)

A function of the form

uj(t, x) = eλjt
(
tkj

kj !
uj0(x) +

tkj−1

(kj − 1)!
uj1(x) + · · ·+ ujkj (x)

)
(8)

becomes an elementary solution of the homogeneus (3), (4) if and only if a system
of the functions uj0(x), uj1(x), . . . , ujkj (x) is a chain of root functions of problem
(6)—(7), corresponding to the eigenvalue λj .
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Theorem 5. Let conditions of the previous theorem be satisfied with q = 2.
Then problem (3)—(5) (with f(t, x) ≡ 0) has a unique solution

u ∈ C([0, T ], L2(0, 1)) ∩C1((0, T ],W 2
2 (0, 1), L2(0, 1))

and there exist numbers cjn such that

lim
n→∞

sup
t∈(0,T ]

‖u(t, ·)−
n∑

j=1

cjnuj(t, ·)‖L2(0,1) = 0,

lim
n→∞

sup
t∈(0,T ]

t(‖u′t(t, ·)−
n∑

j=1

cjnu
′
jt(t, ·)‖L2(0,1) +

+ ‖u(t, ·)−
n∑

j=1

cjnuj(t, ·)‖W 2
2 (0,1)

) = 0,

where u(t, x) is a solution to problem (3)—(5) (with f(t, x) ≡ 0) and uj(t, x) is
an elementary solution (8) of homogeneus problem (3)—(4).
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