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Abstract. Asymptotic behaviour of a particular solutions of the linear
discrete nonhomogeneous equation

∆u(k) = A(k)u(k) + g(k), k ∈ N(a)
is considered, where ∆u(k) = u(k+1)−u(k), N(a) = {a, a+1, . . . }, a ∈ N
is fixed, N = {0, 1, . . . } and A, g : N(a)→ R.
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Let us consider the linear discrete nonhomogeneous equation

∆u(k) = A(k)u(k) + g(k), k ∈ N(a) (1)

where∆u(k) = u(k+1)−u(k),N(a) = {a, a+1, . . .}, a ∈ N is fixed, N = {0, 1, . . .}
and A, g : N(a)→ R. Suppose A(k) �= 0 for every k ∈ N(a).

This is the preliminary version of the paper.
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Let us construct a formal series which satisfies equation (1). Define a sequence
of functions

f0(k), f1(k), . . . , fn(k), . . . , k ∈ N(a),

as follows:

f0(k) = −
g(k)
A(k)

, fp(k) =
∆fp−1(k)
A(k)

, k ∈ N(a)

where p = 1, 2, . . . . Obviously, this sequence is well defined for every k ∈ N(a).
Define a formal series

FS(k) := f0(k) + f1(k) + · · ·+ fn(k) + · · · . (2)

Lemma 1. Suppose A(k) �= 0 for every k ∈ N(a). Then the formal series FS(k)
defined by relation (2) is a formal solution of equation (1).

Theorem 2. [1] Let us suppose that for every k ∈ N(a) and a fixed p ∈ {0}∪N :

1) A(k) �= 0.
2) fp+1(k) < 0, ∆fp(k) < 0 and ∆fp+1(k) > 0.

Then there exists a particular solution upart = upart(k), k ∈ N(a) of the
discrete linear nonhomogeneous equation (1) such that the inequalities

p+1∑
s=0

fs(k) < upart(k) <
p∑

s=0

fs(k)

hold for every k ∈ N(a).

Theorem 3. [1] Let us suppose that for every k ∈ N(a) and a fixed p ∈ {0}∪N :

1) A(k) �= 0.
2) fp+1(k) > 0, ∆fp(k) > 0 and ∆fp+1(k) < 0.

Then there exists a particular solution upart = upart(k), k ∈ N(a) of the
discrete linear nonhomogeneous equation (1) such that the inequalities

p∑
s=0

fs(k) < upart(k) <
p+1∑
s=0

fs(k)

hold for every k ∈ N(a).

Example 4. Let us consider a linear discrete equation

∆u(k) = k5u(k)− k6. (3)

In accordance with Theorem 3 (p = 0) there exists a particular solution upart =
upart(k), k ∈ N(1) of the equation (3) such that the inequalities

k < upart(k) < k +
1
k5

hold for every k ∈ N(1).
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