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UNIQUENESS/NONUNIQUENESS FOR NONNEGATIVE SOLUTIONS
OF A CLASS OF SECOND-ORDER PARABOLIC EQUATIONS∗

J. ENGLÄNDER† AND R. G. PINSKY‡

Abstract. We investigate uniqueness and nonuniqueness for nonnegative solutions of the equation

ut = Lu + V u− γup in Rn × (0,∞);
u(x, 0) = f(x), x ∈ Rn;
u ≥ 0,

where γ > 0, p > 1, γ, V ∈ Cα(Rn), 0 ≤ f ∈ C(Rn) and L =
∑n

i,j=1 ai,j(x) ∂2

∂xi∂xj
+

∑n
i=1 bi(x) ∂

∂xi

with ai,j , bi ∈ Cα(Rn).

Key words. semilinear parabolic equations, uniqueness/nonuniqueness, Cauchy problem, reaction-
diffusion equations

AMS subject classifications. 35K15, 35K55

1. Introduction. In this article we study uniqueness for nonnegative solutions
u ∈ C2,1(Rn × (0,∞)) ∩ C(Rn × [0,∞)) to the semilinear equation

ut = Lu + V u− γup in Rn × (0,∞);

u(x, 0) = f(x), x ∈ Rn;

u ≥ 0,

(1.1)

where γ, V ∈ Cα(Rn), γ > 0, p > 1, 0 ≤ f ∈ C(Rn) and

L =
n∑

i,j=1

ai,j(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
,

with ai,j , bi ∈ Cα(Rn) and
∑n

i,j=1 ai,j(x)νiνj > 0, for all x ∈ Rn and ν ∈ Rn − {0}.
In the case that V is bounded from above, it will be useful to compare uniqueness

in the class of nonnegative solutions for the semilinear equation with uniqueness in the
class of bounded solutions u ∈ C2,1(Rn × (0,∞)) ∩C(Rn × [0,∞)) for the corresponding
linear equation:

ut = Lu + V u in Rn × (0,∞);

u(x, 0) = f(x);

sup0≤t≤T supx∈Rn |u(x, t)| < ∞, for all T > 0,

(1.2)

where f ∈ C(Rn).

∗The research of the second author was supported by the Fund for the Promotion of Research at the
Technion.

†Department of Statistics and Applied Probability, University of California, Santa Barbara, CA 93106-
3110, USA. (englander@pstat.ucsb.edu)

‡Department of Mathematics, Technion, Haifa 32000, Israel. (pinsky@math.technion.ac.il)

67



68 J. Engländer and R. G. Pinsky

Notation. In the sequel, when referring to the nonnegative semilinear problem (1.1),
we will sometimes use the notation NSf , NS(L, V, γ) or NSf (L, V, γ) to specify the
dependence respectively on the initial condition, on the particular operator or on both
the initial condition and the particular operator. Similarly, when referring to the bounded
linear problem. (1.2), we will sometimes use the notation BL(L, V ). (In the linear case,
the initial condition is of course irrelevant with regard to the question of uniqueness.)

Remarks.
(i) Because of the page limit we will not be able to provide proofs except for some

very short ones. A longer version of this paper with complete proofs is [4].
(ii) Further results have been achieved in the subject recently in the follow-up paper

[5]. In that paper V is assumed to be bounded from above and the probabilistic point of
view is emphasized. For example it has been shown in [5] that uniqueness for the semi-
linear parabolic equation is not affected by a bounded change in β. Moreover, assuming
infRn γ > 0, it was shown that whenever uniqueness fails for BL(L, V ), uniqueness also
fails for NSf for all f (cf. Theorem 3.4).

In Section 2 we present a basic result asserting the existence of a minimal and a
maximal solution to the nonnegative semilinear equation NSf . For some related results
in the case L = ∆, see [12] and [1]. This result, of interest in its own right, is also useful
for the study of uniqueness – indeed, uniqueness occurs if and only if the minimal and
maximal solutions coincide. (The nonlinear reaction term in this paper is V u − γu2.
In [15], a quite precise growth condition is given on the nonlinear reaction term f(x, u)
in order to determine whether or not a maximal nonnegative solution exits for ut =
Lu + f(x, u).)

In section three, we begin the study of uniqueness for the semilinear equation. One
of the two main results in that section is a sufficiency condition for uniqueness which is
given in terms of pointwise bounds on the coefficients of the semilinear operator. The
other main result in that section is a sufficiency condition for nonuniqueness which states
that if infx∈Rn

V (x)
γ(x) > 0 and if nonuniqueness holds for the linear problem BL(L, 0), then

nonuniqueness also holds for NS0(L, V, γ). In order to implement this result, we also
present a result on uniqueness for the linear problem.

In Section 4, we develop a connection between uniqueness for the semilinear parabolic
problem and uniqueness for the corresponding steady state elliptic equation, which turns
out to be very useful in applications. For additional results in this direction, see [15]. In
Sections 5, we apply the results of Sections 3 and 4 to two specific classes of problems. We
also show how our results can be used to give an alternative proof to a classical result of
Ni [13], Kenig and Ni [9] and Lin [11] on uniqueness/nonuniqueness of positive solutions
to the semilinear elliptic equation ∆w − γwp = 0 in Rn, for n ≥ 3, and how they lead to
a new result for this equation when n = 1, 2.

2. Existence of a Maximal and a Minimal Solution. In this section we present
the following theorem on the existence of minimal and maximal solutions.

Theorem 2.1. Let f ∈ C(Rn). There exist solutions uf ;min and uf ;max of NSf with the
property that any solution u to NSf satisfies

uf ;min ≤ u ≤ uf ;max.

We now present a standard semilinear parabolic maximum principle which is applied
in [4] to obtain an a priori estimate on the size of any solution to NS.
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Proposition 2.2. Let D ⊂ Rn be a bounded domain and let 0 ≤ u1, u2 ∈
C2,1(D × (0,∞)) ∩ C(D̄ × [0,∞)) satisfy

Lu1 + V u1 − γup
1 −

∂u1

∂t
≤ Lu2 + V u2 − γup

2 −
∂u2

∂t
, for (x, t) ∈ D × (0,∞),

u1(x, t) ≥ u2(x, t) for (x, t) ∈ ∂D × (0,∞)

and

u1(x, 0) ≥ u2(x, 0), for x ∈ D.

Then u1 ≥ u2 in D × (0,∞).

Proof. Let W = u1 − u2 and define H(x) = up
1(x)−up

2(x)
W (x) , if W (x) 6= 0, and H(x) = 0

otherwise. We have LW + (V −H)W − ∂W
∂t ≤ 0 in D × (0,∞), W (x, 0) ≥ 0 in D, and

W (x, t) ≥ 0 on ∂D × (0,∞). Thus, by the standard linear maximum principle, u1 ≥ u2.

In the sequel we will frequently use the notation

BR = {x ∈ Rn : |x| < R}.

Proposition 2.3. Let u ∈ C2,1(BR × (0,∞)) ∩ C(B̄R × [0,∞)) satisfy

ut = Lu + V u− γup in BR × (0,∞);

u(x, 0) = f(x), x ∈ B̄R;

u ≥ 0,

where f ∈ C(B̄R). Let VR = supx∈BR
V (x), if supx∈BR

V (x) > 0, and let VR > 0 be
arbitrary otherwise. Let γR = infx∈BR

γ(x). Then there exists a constant KR such that
for sufficiently small ε > 0,

u(x, t) ≤
(

VR

γR

) 1
p−1

(1− exp(−(p− 1)VR(t + ε)))−
1

p−1

+ ((R + ε)2 − |x|2)−
2

p−1 exp(KR(t + 1)), for (x, t) ∈ B̄R × [0,∞).

3. Uniqueness/Nonuniqueness for the Semilinear Parabolic Equation. Note
that by Theorem 2.1, uniqueness follows for NSf if uf ;min ≡ uf ;max.

We begin with a couple of useful comparison results.

Proposition 3.1. Let 0 ≤ f1 ≤ f2. If uniqueness holds for NSf1 , then it also holds for
NSf2 .

Remark. In particular, it follows from the proposition that if uniqueness holds for f ≡ 0,
then it holds for all 0 ≤ f ∈ C(Rn). In fact, we suspect that uniqueness either holds for
all f or no f .

Proposition 3.2. Assume that

V1 ≤ V2
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and

0 < γ2 ≤ γ1.

If uniqueness holds for NS0(L, V2, γ2), then uniqueness also holds for
NSf (L, V1, γ1), for all f .

We now come to our first main result, which guarantees uniqueness for NS if the
coefficients satisfy appropriate pointwise estimates.

Theorem 3.3. Assume that
n∑

i,j=1

aij(x)νiνj ≤ C|ν|2(1 + |x|)2; (3.1)

|b(x)| ≤ C(1 + |x|); (3.2)

V (x) ≤ C, (3.3)

for some C > 0. Assume in addition that

inf
x∈Rn

γ(x) > 0.

Then uniqueness holds for NSf , for all f .

The second main result in this section relates nonuniqueness of the semilinear equation
to nonuniqueness of the corresponding linear problem obtained by setting both γ and V
equal to 0.

Theorem 3.4. Assume that uniqueness does not hold for BL(L, 0) and that

inf
x∈Rn

V (x)
γ(x)

> 0.

Then uniqueness does not hold for NS0(L, V, γ).

Remark. For an example where the condition infx∈Rn
V (x)
γ(x) > 0 holds and there is

uniqueness for BL but not for NS, one can turn to the applications in section five and
take the class of equations in (5.2) with V = C > 0 and γ as in Theorem 5.3-(ii).

In order for Theorem 3.4 to be useful, we need to know when uniqueness holds for
the bounded linear problem BL(L, 0). Hence, before proceeding further, we make a
small digression to study the linear problem. We have the following result which actually
considers more generally BL(L, V ).

Proposition 3.5.
(i-a) If V is bounded from above and uniqueness holds for BL(L, 0), then uniqueness

holds for BL(L, V ).
(i-b) If V is bounded from below and uniqueness holds for BL(L, V ), then uniqueness

holds for BL(L, 0).
(ii-a) If there exist m0, λ > 0 and a positive function φ satisfying Lφ ≤ λφ in Rn−Bm0

and lim|x|→∞ φ(x) = ∞, then uniqueness holds for BL(L, 0).
(ii-b) If there exist m0, λ > 0, an x0 ∈ Rn satisfying |x0| > m0, and a bounded, positive

function φ satisfying Lφ ≥ λφ in Rn − Bm0 and φ(x0) ≥ sup|x|=m0
φ(x), then

uniqueness does not hold for BL(L, 0).



Equadiff-11. Uniqueness/nonuniqueness for parabolic equations 71

Remark 1. Recall from Theorem 3.3 that if the pointwise bound (3.1)–(3.3) on the
coefficients of the linear part of the semilinear equation is in effect along with the condition
infx∈Rn γ(x) > 0 on the nonlinear part, then uniqueness holds for the semilinear equation.
It is interesting to note how (3.1)–(3.3) relates to uniqueness for the linear equation. Using
the function φ(x) = |x|2 in part (ii-a) of Proposition 3.5 and then using part (i-a) shows
that if (3.1)–(3.3) is in force, then uniqueness holds for BL(L, V ). As far as pointwise
polynomial-type bounds are concerned, condition (3.1)–(3.2) is sharp for the uniqueness
of BL(L, 0). Indeed, applying part (ii-b) with the function φ(x) = 1− |x|−l, where l > 0
is sufficiently small, shows that uniqueness does not hold for BL(L, 0) in the following
two cases: (1) L = (1+ |x|)2+δ∆ with δ > 0 and n ≥ 3; (2) L = ∆+ b∇ and n ≥ 1, where
b(x) · x

|x| ≥ c|x|1+δ for large |x| and some δ, c > 0.

In passing, we note that the question of uniqueness of positive solutions to the linear
equation has a long history in the partial differential equations literature, going back to
Widder. It is known that uniqueness of positive solutions holds if (3.2)–(3.3) is in force and
if (3.1) is replaced by a two-sided bound of the form C1|ν|2(1+|x|)q ≤

∑n
i,j=1 aij(x)νiνj ≤

C2|ν|2(1 + |x|)q, for some q ∈ [0, 2]. See, for example, [8] and references therein.

Remark 2. It’s well-known in the probability literature that uniqueness holds for
BL(L, 0) if and only if the Markov diffusion process corresponding to the operator L
is nonexplosive; that is, the process does not run out to infinity in finite time. In the case
that p ∈ (1, 2], the equation NS is also connected with a Markov process; namely, with
a measure-valued diffusion process. The so-called compact support property for measure
valued diffusions can be thought of as the parallel to nonexplosiveness for ordinary dif-
fusions. We have shown elsewhere that uniqueness for NS0 is equivalent to the compact
support property holding [3]. (Actually, the case p = 2 is treated in [3] but it extends
immediately to p ∈ (1, 2].) Certain results in this paper appeared in the case p = 2 with
probabilistic proofs in [3] or [2].

4. The Interplay Between Uniqueness/Nonuniqueness of the Parabolic
Equation and of the Corresponding Steady-State Elliptic Equation. Consider
the elliptic semilinear equation corresponding to steady state solutions of NS:

Lw + V w − γwp = 0 and w ≥ 0 in Rn. (4.1)

The next theorem gives conditions for uniqueness/nonuniqueness in terms of solutions to
the elliptic equation. As we shall see in the next section, this result can be very useful.

Theorem 4.1.
(i) Let {fm}∞m=1 ⊂ C(Rn) be an increasing sequence of nonnegative compactly sup-

ported functions satisfying limm→∞ fm = ∞. Let ufm;min denote the minimal
solution to NSfm

. Then

w∗(x) ≡ lim
t→∞

lim
m→∞

ufm;min(x, t) (4.2)

exists and is a nonnegative solution to (4.1). There exists a maximal solution
wmax to (4.1), and if wmax  w∗, then uniqueness does not hold for NSf , for
any f . Furthermore, if infx∈Rn γ(x) > 0, then w∗ satisfies the bound

sup
x∈Rn

w∗(x) ≤
(

supx∈Rn V +(x)
infx∈Rn γ(x)

) 1
p−1

, (4.3)

where V + = max(V, 0).
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(ii) If w = 0 is the only solution to (4.1), then uniqueness holds for NSf , for all f .

For the proof of Theorem 4.1 we needed in [4] the following result which is of
independent interest.

Proposition 4.2. Let {fm}∞m=1 be an increasing sequence of nonnegative compactly
supported functions satisfying limm→∞ fm = ∞. Then

u∞;min ≡ lim
m→∞

ufm;min

and

u∞;max ≡ lim
m→∞

ufm;max

exist and are independent of the particular sequence {fm}. They solve NS with initial
condition f = ∞ and they are monotone nonincreasing in t. Furthermore

w∗(x) ≡ lim
t→∞

u∞;min(x, t) (4.4)

is a solution to (4.1) and

wmax(x) ≡ lim
t→∞

u∞;max(x, t) (4.5)

is the maximal, nonnegative solution to (4.1).

5. Applications. In this section we use the array of results in sections three and four
to prove theorems on uniqueness/nonuniqueness for two classes of semilinear parabolic
equations (again, the missing parts can be found in [4]). We will also show how some of
the results in this paper can be used to give an alternative proof and an extension of a
classical result in semilinear elliptic theory.

We will determine how uniqueness depends on α for the following class of equations:

ut = α∆u− up in Rn × (0,∞);

u(x, 0) = f(x), x ∈ Rn;

u ≥ 0.

(5.1)

And with a relatively generic V we will determine how uniqueness depends on γ for the
following class of equations:

ut = ∆u + V u− γup in Rn × (0,∞);

u(x, 0) = f(x), x ∈ Rn;

u ≥ 0.

(5.2)

Concerning the class of equations appearing in (5.1), we have the following result.
Theorem 5.1.

(i-a) Let n ≥ 2. If

α(x) ≤ C(1 + |x|)2,

for some C > 0, then uniqueness holds in (5.1) for all f .
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(i-b) Let n ≥ 2. If

α(x) ≥ C(1 + |x|)2+ε,

for some ε, C > 0, then uniqueness does not hold in (5.1) for any f .
(ii-a) Let n = 1. If

α(x) ≤ C(1 + |x|)1+p,

for some C > 0, then uniqueness holds in (5.1), for all f .
(ii-b) Let n = 1. If

α(x) ≥ C(1 + |x|)1+p+ε,

for x > 0 or for x < 0 and some ε, C > 0, then uniqueness does not hold in (5.1)
for any f .

Before turning to (5.2), we will show how Theorems 3.3 and 4.1 can be used to obtain
an alternate proof of a classical result concerning nonexistence of nontrivial solutions of
a certain semilinear elliptic equation in dimension n ≥ 3, and how these theorems along
with Theorem 5.1 can be used to extend that result to appropriate corresponding results
in the cases d = 1, 2.

It was shown by Ni [13] and Kenig and Ni [9] that the equation ∆w − γwp = 0 in
Rn, n ≥ 3, has no nontrivial, nonnegative solution if γ(x) ≥ C(1 + |x|)−2+ε, for some
C, ε > 0, and that nontrivial, nonnegative solutions do exist if γ(x) ≤ C(1 + |x|)−2−ε.

Lin [11] extended the nonexistence result to the borderline case: there is no nontrivial
solution if γ(x) ≥ C(1 + |x|)−2. Here is a quick proof of this last result: Let C > 0. By
Theorem 3.3, uniqueness holds for NS((1 + |x|)2∆, 0, C). From (4.3) in Theorem 4.1,
it follows that w∗ ≡ 0. But then since uniqueness holds and w∗ = 0, it follows again from
Theorem 4.1 that there is no nontrivial nonnegative solution to (1+ |x|)2∆w−Cwp = 0.

Note that the above proof is independent of dimension and works just as well for
n = 1, 2. Using Theorem 5.1(i), we can also give an alternative proof of the existence
part of the above result, and more importantly, we can extend the existence/nonexistence
dichotomy to dimensions n = 1, 2.

Theorem 5.2. Let p > 1.
(i) Consider the equation

u′′ − γup = 0 in R. (5.3)

There exists a positive solution to (5.3) if γ(x) ≤ C(1 + |x|)−1−p−ε, for some
C, ε > 0, and there is no positive solution to (5.3) if γ(x) ≥ C(1 + |x|)−1−p, for
some C > 0.

(ii) Consider the equation

∆u− γup = 0 in Rn, n ≥ 2. (5.4)

There exists a positive solution to (5.4) if γ(x) ≤ C(1 + |x|)−2−ε, for some
C, ε > 0, and there is no positive solution to (5.4) if γ(x) ≥ C(1 + |x|)−2, for
some C > 0.

Proof. Part (i). Consider the semilinear equation

ut = αu′′ − up in R× (0,∞). (5.5)
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If α(x) ≤ C(1 + |x|)1+p, then it follows from Theorem 5.1(ii-a) that uniqueness holds
for (5.5). Also, by (4.3) we have w∗ = 0 for equation (5.5). Thus, we conclude from
Theorem 4.1(i) that there is no positive solution to αu′′−up = 0 in R. This is equivalent
to the nonexistence statement in (i). On the other hand, if α(x) ≥ C(1 + |x|)1+p+ε,
then by Theorem 5.1(ii-b) uniqueness does not hold for (5.5). Thus, it follows from
Theorem 4.1(ii) that a positive solution exists for αu′′−up = 0 in R, which is equivalent
to the existence statement in (i).

Part (ii) is proven in exactly the same manner.

We now turn to the class of equations in (5.2).

Theorem 5.3.
(i) Let V be bounded from above. If

γ(x) ≥ C1 exp(−C2|x|2),

for some C1, C2 > 0, then uniqueness holds in (5.2) for all f .

(ii) Let V ≥ 0. If

γ(x) ≤ C exp(−|x|2+ε),

for some C, ε > 0, then uniqueness does not hold in (5.2) for f ≡ 0.

Remark. Equation (5.2) with 0 ≤ V ≤ C and γ(x) ≤ C exp(−|x|2+ε), with C, ε > 0 is an
example where uniqueness holds for BL but not for NS. For another example, consider
L = (1 + |x|)l∆ with n = 2 and l > 2 or with n = 1 and l > 1 + p. Let V = 0 and γ = 1.
Applying Proposition 3.5-(ii-a) with φ(x) = log |x| if n = 2 and with φ(x) = |x| if n = 1
shows that uniqueness holds for BL. On the other hand, by (4.3), we have w∗ = 0 while
by Theorem 5.1, wmax 6= 0. Thus, by Theorem 4.1(i), uniqueness does not hold for
NS.

For an example where uniqueness holds for NS but not for BL, consider the operator
L = (1 + |x|)l∆ in Rn, n ≥ 3, for l > 2, and let V = 0. Then uniqueness does not hold
for BL – see Remark 1 after Proposition 3.5. On the other hand, if γ ≥ (1 + |x|)l−2,
then uniqueness does hold for NS. Indeed, by Proposition 3.2 and Theorem 4.1(ii),
it suffices to show that there is no nontrivial, nonnegative solution w to Lw− γwp = 0 in
Rn, or equivalently, to

∆w − γ(x)
(1 + |x|)l

wp = 0 in Rn.

But this follows from Theorem 5.2. Note that in this example, infx∈Rn
V
γ (x) = 0, as

must be the case in light of Theorem 3.4.

For the proofs in [5] one also needs the following semilinear elliptic maximum principle.

Proposition 5.4. Let D ⊂ Rn be a bounded domain and let 0 ≤ u1, u2 ∈ C2(D)∩C(D̄)
satisfy

Lu1 + V u1 − γup
1 ≤ Lu2 + V u2 − γup

2 in D,

and
u1 ≥ u2 on ∂D.

Assume that V ≤ 0. Then u1 ≥ u2 in D.
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Proof. Let W = u1 − u2 and define H(x) = up
1(x)−up

2(x)
W (x) , if W (x) 6= 0, and H(x) = 0

otherwise. Then H ≥ 0 and we have LW +(V −H)W ≤ 0 in D and W ≥ 0 on ∂D. Since
V −H ≤ 0, it follows from the standard linear elliptic maximum principle that W ≥ 0 in
D.

Proof of Theorem 5.3. (i) Let U(x, t) = u0;max(x, t) exp(−C|x|2(t+δ)), for some C, δ > 0.
Then U satisfies

∆U + 4C(t + δ)x · ∇U + (4|x|2(t + δ)2C2 + 2nC(t + δ) + V − C|x|2)U
− C1 exp(−C2|x|2) exp(C(p− 1)|x|2(t + δ))Up − Ut ≥ 0 in Rn × (0,∞).

Fixing δ = C2
C(p−1) and C ≥ 16C2

2
p−1 , we obtain

∆U + 4C(t + δ)x · ∇U

+ (2nC(t + δ) + V )U − Up − Ut ≥ 0 in Rn × (0, δ).
(5.6)

Note that the coefficients of the operator on the left hand side of (5.6) satisfy the re-
quirements in Theorem 3.3. (They depend on t unlike in Theorem 3.3, but this is not
important.) Thus, it follows from the maximum principle that for any R > 1, the super
solution in BR × (0,∞) constructed in the proof of [6, Theorem 3.3] is larger or equal to
U in BR × (0, δ). That is,

U(x, t) ≤ (1 + |x|)
2

p−1 (R− |x|)−
2

p−1 exp(K(t + 1)) in BR × (0, δ).

Letting R → ∞ shows that U ≡ 0 in Rn × (0, δ), and thus the same is true for u0;max.
As the original equation was time homogeneous, it is clear that in fact u0;max ≡ 0 in
Rn × (0,∞).

(ii) Writing u(x) = exp((1+|x|2)1+ ε
4 )û and dividing through by exp((1+|x|2)1+ ε

4 ) one sees
that nonuniqueness for the initial condition f = 0 in (5.2) is equivalent to nonuniqueness
for the initial condition f = 0 in an equation of the form

ut = ∆u + B∇u + V̂ u− γ̂up, (5.7)

where B(x) · x
|x| ≥ C1|x|1+

ε
2 , V̂ ≥ C1 and γ̂ ≤ C, for constants C1, C > 0. Uniqueness

does not hold for BL(∆+B∇, 0) as was shown in the remark following Proposition 3.5.
Thus, by Theorem 3.4, uniqueness does not hold for the initial condition f = 0 in (5.7).
2
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