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FINITE TIME SINGULARITIES IN TRANSPORT EQUATIONS WITH
NONLOCAL VELOCITIES AND FLUXES

ANTONIO CÓRDOBA∗, DIEGO CÓRDOBA† , AND MARCO A. FONTELOS‡

Abstract. Navier-Stokes and Euler equations, when written in terms of vorticity, contain nonlinear
convective terms involving singular integral (nonlocal) operators of the vorticity itself. This fact suggests
the analysis of the role played by nonlocal velocities and fluxes in the formation of singularities. We
consider the following one-dimensional analogs of Euler equations, namely:

1) θt + ((Hθ)θ)x = 0

2) θt − (Hθ)θx = 0

with H being the Hilbert transform of, and their viscous versions obtained by adding a dissipative term
at the right hand side of the equations. We prove that the inviscid equations do develop singularities in
finite time while the solutions of the viscous versions do exist for all time. We also discuss connections
of these problems with finite time singularities in Birkhoff-Rott equation.

Key words. Nonlocal transport equations, singular integral operators, Hilbert transform, fluid
dynamics.

AMS subject classifications. 35Q30, 35R35, 74H35, 35Q35

1. Introduction. We present some results on partial differential equations of trans-
port type for a scalar θ with nonlocal velocities or fluxes. We concentrate on the case of
one space dimension and the nonlocal operator will be given by the Hilbert transform of
θ defined as

Hθ(x) =
1
π
P · V ·

∫ ∞

−∞

θ(y)
x− y

dy, (1.1)

or

Hθ(x) =
1
2π
P · V ·

∫ π

−π

θ(x− y)
tany

2

dy (1.2)

in the periodic case. Specifically, we shall consider the following problems:

θt + (H(θ)θ)x = 0, (1.3)
θ(x, 0) = θ0(x). (1.4)

and

θt −H(θ)θx = 0, (1.5)
θ(x, 0) = θ0(x). (1.6)
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‡Departamento de Matemáticas, Universitad Autónoma de Madrid, 28049 Madrid, Spain

(marco.fontelos@uam.es)

97
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Equation (1.3) appears as a formal 1D analog to the 2D quasi-geostrophic equation
(QG), which models the dynamics of the mixture of cold and hot air and the fronts
between them, and reads

θt + (u · ∇)θ = 0, (1.7)

u = ∇⊥ψ, θ = −(−∆)
1
2ψ, (1.8)

θ(x, 0) = θ0(x), (1.9)

where ∇⊥ = (−∂2, ∂1). Here θ(x, t) represents the temperature of the air. Besides its
direct physical significance ([8, 13]), the quasi-geostrophic equation has very interesting
features of resemblance to the 3D Euler equation. Also, the finite time blow-up for (QG) is
an outstanding open problem. With respect to that question there are pioneering studies
due to Constantin, Majda and Tabak [4]. There are many studies on the equations
following that work ([5, 11, 14, 16]). The analogy with (1.3) comes from the fact that

u = −∇⊥(−∆)−
1
2 θ = −R⊥θ, (1.10)

and hence

θt + div[(R⊥θ)θ] = 0, (1.11)

where we have used the notation R⊥θ = (−R2θ,R1θ) with Rj , j = 1, 2, for the two
dimensional Riesz transform defined by (see e.g. [15])

Rj(θ)(x, t) =
1
2π
PV

∫
R2

(xj − yj)θ(y, t)
|x− y|3

dy. (1.12)

The equivalent (in terms of homogeneity) singular integral operator to the Riesz transform
in 1D is the Hilbert transform. Therefore, (1.3) is just (1.11) with R⊥(·) replaced by H(·)
and div(·) replaced by ∂x.

Equation (1.5) represents the simplest case of a transport equation with a nonlocal
velocity. It is well known that the equivalent equation with a local velocity v = θ, known
as Burger’s equation, may develop shock-type singularities in finite time. Therefore a
natural question to pose is whether the solutions to (1.5) become singular in finite time
or not. In fact this question has been previously considered in the literature motivated by
the strong analogy with the Birkhoff-Rott equation modelling the evolution of a vortex
sheet, where a crucial mathematical difficulty lies in the nonlocality of the velocity.

The analogy of (1.5) with Birkhoff-Rott equations was first established in [1] and
[10]. These are integrodifferential equations modelling the evolution of vortex sheets with
surface tension. The system can be written in the form

∂

∂t
z∗(α, t) =

1
2πi

PV

∫
γ̃(α′) dα′

z(α, t)− z(α′, t)
(1.13)

∂γ̃

∂t
= σκα (1.14)

where z(α, t) = x(α, t)+i y(α, t) represents the two dimensional vortex sheet parametrized
with α, and where κ denotes the mean curvature. Following [1] we substitute, in order
to build up the model, the equation (1.13) by its 1D analog

dx(α, t)
dt

= −H(θ) (1.15)
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where we have identified γ(α, t) with θ. In the limit of σ = 0 in (1.14) we conclude that
γ is constant along trajectories and this fact leads, in the 1D model, to the equation

θt − (Hθ) θx = 0. (1.16)

There is now overwhelming evidence that vortex sheets form curvature singularities
in finite time. This evidence comes from the classical paper by Moore [9] where he
studied the Fourier spectrum of z(α, t) and, in particular, its asymptotic behavior when
the wavenumber k goes to infinity. His numerical results showed that, up to very high
values of k, this asymptotic behavior is compatible with the formation of a curvature
singularity in finite time. Although there has been a very intense activity in order to
provide a definitive proof of the formation of such a singularity (see discussions and
references in [9], [2] and [1]) all the existing results are mostly supported by numerics
or formal asymptotics and do not constitute a full mathematical proof. The same kind
of arguments were used in [1] in order to argue the existence of singularities for the 1D
analog (1.16).

Problems of the type (1.3), (1.5) were already studied in [1] and [10]. In [10], the
following equation was considered

θt + δ(H(θ)θ)x + (1− δ)H(θ)θx = 0 with 0 ≤ δ ≤ 1. (1.17)

In Theorem 1.1 below, we proved existence of singularities for the full range of 0 < δ ≤ 1.
The proof of existence of singularities in the case δ = 0 is solved in [6] using a different
technique.

We have proved the following theorems:

Theorem 1.1. Given a periodic non-constant initial data θ0 ∈ C1([−π, π]) such that∫ π

−π
θ0(x) dx = 0, there is no C1([−π, π]× [0,∞)) solution to (1.17) with δ > 0.

In fact, the result can be improved and extends to any compactly supported initial
data in C1(R) such that

∫
R θ0(x) dx = 0 since it can be proved that the support is not

expanding as time progresses.

Theorem 1.2. If θ0 has compact support and is strictly positive then the solutions of
(1.5) will always be such that ‖θx‖L∞ blows up in finite time.

In Section 2 we show that solutions to (1.3) may develop singularities in finite time
by constructing explicit examples. The proof of formation of singularities in (1.5) is the
subject of Section 3. Finally, in Section 4 we consider the viscous versions of (1.3), (1.5).

2. Sketch of proof of Theorem 1.1 and construction of singular solutions
of equation (1.3). In order to prove Theorem 1.1 (see [3] for further details) we define
x(t), x(t) such that

M(t) = θ(x(t), t),
m(t) = θ(x(t), t),

here M(t) = max θ(·, t) and m(t) = min θ(·, t) for every t ≥ 0 and notice that

Λθ(x) = Hθx(x) =
1
2π
P · V ·

∫ π

−π

θ(x)− θ(y)
sin2 x−y

2

dy . (2.1)
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By following the point at which the minimum of θ is achieved one can show from (1.17)

m′(t) = − δ

2π
m(t)

∫ π

−π

θ(x, t)− θ(y, t)
sin2 x−y

2

dy ≤ 0 (2.2)

at almost every t and hence m(t) ≤ m(0) < 0. Analogously we can show M(t) ≤ M(0)
and therefore the set {

y : θ(y, t) ≥ θ(x, t)
2

}
(2.3)

has strictly positive measure. Hence there exists a universal positive constant C so that:

δ

2π

∫ π

−π

θ(y, t)− θ(x, t)
sin2 x−y

2

dy ≥ C|θ(x, t)|, (2.4)

so that

|m|′(t) ≥ C|m(t)|2 (2.5)

implying blowup for |m| in finite time. This completes the proof.

In order to construct explicit singular solutions to (1.17) with δ = 1, we can transform
(1.3) into an equation for complex valued functions. We start by recalling the following
well known formulas for the Hilbert transform (see e.g. [12]):

H(Hf) = −f, (2.6)

H(fHg + gHf) = (Hf)(Hg)− fg, (2.7)

(Hf)x = H(fx). (2.8)

If we apply the Hilbert transform at both sides of (1.3) and use the relations above we
obtain the equation

(Hθ)t +
1
2
((Hθ)2 − (θ)2)x = 0. (2.9)

Equations (1.3) and (2.9) can be combined into a single equation for the complex function

z(x, t) = Hθ(x, t) + i θ(x, t), z0(x) = Hθ0(x) + i θ0(x). (2.10)

Namely, (1.3) and (2.9) are the real and imaginary parts of the following complex Burger’s
equation

zt + zzx = 0, (2.11)
z(x, 0) = z0(x). (2.12)

Another way of writing the system is

ut + uux − θθx = 0 , (2.13)
θt + uθx + θux = 0 , (2.14)
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where u = Hθ. It is a well known fact that systems of two first order PDEs in two variables
can be linearized by using the hodograph transformation which consists in considering
x(u, θ) and t(u, θ) and writing equations for them through the relations

ux = Jtθ ,

θx = −Jtu ,
ut = −Jxθ ,

θt = Jxu ,

where J = (xutθ − xθtu)−1. This leads to the system

− xθ + utθ + θtu = 0 , (2.15)
xu − utu + θtθ = 0 . (2.16)

valid as long as J−1 6= 0. By introducing η(u, θ) ≡ −(x(u, θ) − t(u, θ)u) and ξ(u, θ) ≡
−t(u, θ)θ one can write (2.15), (2.16) in the form of the following Cauchy-Riemann system

ξu = ηθ ,

ξθ = −ηu .

Hence we can construct solutions from holomorphic functions f(z) = ξ(u, θ) + i η(u, θ)
where z = u + i θ. From the initial data one gets u(x, 0) + i θ(x, 0) which represents a
curve γ in the complex plane parameterized by x. On the other hand, at t = 0 one has
η(u, θ) = x(u, θ) and ξ(u, θ) = 0 defining the values of η and ξ along γ. Therefore, to solve
the initial value problem is equivalent to extend analytically a complex variable function
with values given along a certain curve γ. We do not know how to do this in general, but
in [3] we were able to construct solutions developing singularities in finite time by using
this technique. Let us consider the example:

f(z) = ln z . (2.17)

By writing z = rei ϕ we have

f(z) = ln r + iϕ = ln
√
u2 + θ2 + i arctan

θ

u
. (2.18)

The real part of f(z) is zero along the circumference of radius 1: γ =
{
(u, θ) : u2 + θ2 = 1

}
.

Parameterizing γ in the form (u, θ) = (cosϕ, sinϕ) one gets η = Imf(z) = ϕ. Since along
γ one has η(u, θ) = −x(u, θ) it follows that ϕ = −x which yields the following initial data
for z :

z(x, 0) = cosx− i sinx . (2.19)

This initial data is compatible with (2.9), since H(sinx) = − cosx. From (2.18) and the
definition of η and ξ it follows

− tθ = ln
√
u2 + θ2, (2.20)

−(x− tu) = arctan
θ

u
, (2.21)

which define implicitly the real and imaginary parts (u(x, t), θ(x, t)) of the solution at any
given (x, t). From (2.21) one can get

θ = −u tan(x− tu) (2.22)
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which inserted in (2.20) yields

tu tan(x− tu) = ln
∣∣∣∣ u

cos(x− tu)

∣∣∣∣ . (2.23)

Expression (2.23) defines u(x, t) implicitly. Notice that u(x, 0) = cosx satisfies (2.23). If
we fix our attention to points in a neighborhood of x = π

2 it is simple to show from (2.23)
that u(x, t) develops cusps at finite time. Writing

u
(π

2
+ δx, t

)
' A(t)δx , (2.24)

inserting this into (2.23) and letting δx→ 0 it follows

− tA(t)
1

1− tA(t)
= ln

∣∣∣∣ A(t)
1− tA(t)

∣∣∣∣ . (2.25)

It is easy to show that A(t), defined implicitly by (2.25) in such a way that A(0) = −1
(notice that ux(π

2 , 0) = − sin π
2 = −1 ), decreases for t > 0 and blows-up to −∞ at

t = e−1 ' 0. 36788. Hence, our conclusion is that ux(π
2 , t) blows-up at finite time.

3. Idea of the proof of Theorem 1.2. The result obtained in [6] for symmetric
initial data θ0(x) and extended recently to general compactly supported positive initial
data shows that the solutions to (1.5) develop singularities in finite time. The main idea
of the proof is the use of the following inequality:

−
∫ ∞

−∞

fx(x) [(Hf)(x)− (Hf)(0)]

|x|1+δ
dx ≥ Cδ

∫ ∞

−∞

(f(x)− f(0))2

|x|2+δ
dx , 0 < δ < 1. (3.1)

The proof of (3.1) holds for any function f(x) which is either nonnegative or nonpositive.
It is based in a decomposition of f(x) into a sum of a symmetric and an antisymmetric
function. Each of them can be estimated by means of Mellin transforms. In the symmetric
case, the proof was developed in [6]. The recent work [7] extends the result to general
f ′s.

For the sake of simplicity, we will focus on symmetric and positive θ0(x) with its
support included in [−L,L]. In this case, since

(Hθ0)(L) =
1
π

∫ L

−L

θ0(y)
L− y

dy =
2L
π

∫ L

0

θ0(y)
L2 − y2

dy ≥ 0 (3.2)

and analogously (Hθ0)(−L) ≤ 0, we conclude that the support of θ(x, t) shrinks and is,
in fact, always included in [−L,L].

Next, from (3.1) it follows

(1− θ)t = −H(1− θ)(1− θ)x . (3.3)

Dividing this last expression by |x|1+δ with 0 < δ < 1 and integrating in [0, L] we obtain:

d

dt

(∫ L

0

(1− θ)
x1+δ

dx

)
= −

∫ L

0

(1− θ)xH(1− θ)
x1+δ

dx. (3.4)

The fact that θ cancels outside [−L,L] allows us to write

−
∫ L

0

(1− θ)xH(1− θ)
x1+δ

dx = −
∫ ∞

0

(1− θ)xH(1− θ)
x1+δ

dx . (3.5)
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Using (3.1) we can estimate,

−
∫ ∞

0

(1− θ)xH(1− θ)
x1+δ

dx ≥ Cδ

∫ ∞

0

(1− θ(x, t))2

x2+δ
dx (3.6)

and, consequently,

d

dt

∫ L

0

(1− θ)
x1+δ

dx ≥ Cδ

∫ ∞

0

(1− θ)2

x2+δ
dx ≥ CL,δ

(∫ L

0

(1− θ)
x1+δ

dx

)2

(3.7)

which implies blow up of
∫ L

0
(1−θ)
x1+δ dx in finite time. This implies, in particular, blow up

of θx in finite time since∫ L

0

(1− θ)
x1+δ

dx ≤ sup
x

1− θ

x

∫ L

0

dx
xδ

≤ L1−δ

1− δ
sup

x
|θx| . (3.8)

4. Global regularity for the viscous versions of (1.3) and (1.5). The addition
of higher order (viscous) terms in the equations might prevent the appearance of singu-
larities in the solutions. This might be the case, for instance, of Navier-Stokes equations
with respect to Euler equations. It is then natural to study the global regularity, in the
context of our nonlocal transport equations, of the solutions to the following equations

θt + (θH(θ))x = −νΛαθ ,

θ0(x) = θ(x, 0),
(4.1)

θt − (Hθ) θx = −νΛαθ,

θ0(x) = θ(x, 0),
(4.2)

where Λαθ = (−∆)
α
2 θ.

In [3] the global existence for solutions of equation (4.1) was considered and we
obtained the following partial result:

Theorem 4.1. If α = 1 and the initial data θ0 verifies
∫ π

−π
θ0(x) dx = 0, ‖θ0‖L∞ < ν

and ‖Λ 3
2 θ0‖L2 < ∞, then there is a classical solution of equation (4.1) that satisfies

θ ∈ C1([0,∞);W
3
2 ([−π, π])) and ‖θ(·, t)‖L∞ < ν for every t ≥ 0.

With respect to global existence for solutions of equation (4.2) the following theorem
was proved in [6]:

Theorem 4.2. Let 0 ≤ θ0 ∈ H2(R), ν > 0 and α > 1. Then there exists a constant C,
depending only on θ0 and ν, such that for t ≥ 0:

1) ‖Λ 1
2 θ‖L2(t) ≤ C,

2) ‖Λθ‖L2(t) ≤ C(1 + t),

3) ‖∆θ‖L2(t) ≤ C eCt3 .

Whether or not solutions of (4.1) remain smooth for all times when α > 1 remains
an open problem.
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