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ON A BLOW-UP ESTIMATE FOR A HIGHER ORDER
SEMILINEAR PARABOLIC EQUATION

MANUELA CHAVES*

Abstract. We study the blow-up rate of the solutions of a higher order semilinear parabolic equation.
We first deal with several applications in the second order case. Then we show that although new crucial
ingredients are needed, some key ideas involved in the order-preserving case remain valid when analyzing
the higher-order case.
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1. Introduction. We consider the Cauchy problem for the 2m-th order semilinear
parabolic equation

up = —(—A)"u+ f(u) in Q=RN xRy, (1.1)

where f(u) = uln”(1 + |u|) with v > 1 and initial data ug € X = LY(RY) N L= (RY).
We note that for m = 1 this is a classical semilinear reaction-diffusion equation from
Combustion Theory. For higher-order generalizations m > 1, semilinear and quasilinear
diffusion operators of this type arise in several applications including thin film theory,
flame and wave propagation, phase transition at critical Lifschitz points and bi-stable
systems (e.g., the Kuramoto-Sivashinskii equation and the extended Fisher-Kolmogorov
equation).

Let u(z,t) be a solution of (1.1) which blows up in finite time T' = T'(up) < co. By
blow-up we mean that u is a bounded classical solution in Q, = RY x (0,7] for any
7 € (0,T) and cannot be extended as a bounded one beyond ¢ = T. By the classical
parabolic regularity theory [6], [9], this means that

sup |u(z,t)] 00 as t—T .
x

The limit is understood in the usual sense (one can see that if liminf, - were finite,
then the solution could be extended for all t—T" > 0 small as a classical bounded solution).
General results on global nonexistence for higher-order parabolic equations are well known
from 70’s, see a survey paper [18] and references to [21, Chapt. 4].

We point out that the study of singularities in higher-order heat equations, quite well
understood for second order reaction-diffusion equations, remains an open problem of the
general theory of higher-order parabolic equations.

It is known, see [2], that solutions of (1.1) blow up at finite time. In [2], the blow-up
behaviour of the solutions of (1.1) was also analyzed for v = 2m which corresponds to
regional blow-up phenomena and a classification of other types of blow-up in terms of
the exponent v was given. The asymptotic results, in spite of the significant differences
between the higher-order and second-order cases, are similar: asymptotic simplification
to a Hamilton-Jacobi equation occurs in both cases, see [15] and [2].

*Departamento de Matematica Aplicada, Universidad de Salamanca Salamanca, Spain
(mchaves@usal.es)

135



136 M. Chaves

In this work we deal with an a priori estimate from below of the blow-up rate of the
solutions of equation (1.1), see [2] for a general approach. We show that such estimate
is given, except a multiplicative constant D, by the blow-up rate of the homogeneous in
space blow-up solutions of the ordinary differential equation:

Vi = f(V). (1.2)

The derivation of this estimate is well known in the second order case m = 1, where
the multiplicative constant becomes D = 1. Such result is obtained via a particular
way of comparison, by using the Maximum Principle. We remark that an important
clue in the proof, as well as in in the general study of blow-up phenomena, relies on the
standard comparison and the intersection comparison between solutions having the same
blow-up time. However, these ideas strongly rely on the order-preserving property of the
equation when m = 1 which does not remain valid for the higher order equations (1.1).
We show that in this case, the construction of the majorizing equation associated to (1.1)
introduced in [14] plays an important role in obtaining this blow-up estimate and makes
it possible to follow a similar approach to that used in the second order one.

The plan of the paper is as follows. In Section 2 we briefly comment on how to obtain
the lower blow-up estimate under consideration in the second order case. In particular,
we deal with solutions of a class of quasilinear second-order parabolic equations. Then,
we focus on the higher-order case by introducing in Section 3 the main ideas involved in
the construction of the Majorizing equation. Finally, Section 4 is devoted to analyzing
the rate of blow-up of the solutions of (1.1).

2. A blow-up rate estimate for a quasilinear reaction-absorption diffusion
equation. Many results concerning the asymptotic theory of blow-up have been ob-
tained for semilinear and quasilinear second-order parabolic equations, m = 1, where the
Maximum Principle applies and became an essential tool in the asymptotic analysis. We
refer to the book [21] (quasilinear equations) and to papers [7], [16], [19], [23] (semilinear
equations with f(u) =u? and f(u) = e*), see also references in [21].

As we mention above, the general blow-up analysis in the second-order case, is es-
sentially based on different types of comparison. In particular, the lower estimate under
consideration follows in many cases by a straightforward comparison with a flat solution
U(t) independent of x and satisfying the ODE

U' = f(U) for te(0,T), U(T)= oo,

so that we compare solution u(z,t) and U(¢) having the same blow-up time (then they
must intersect each other whence an estimate from below: sup, u(z,t) > U(t) for any
t € (0,7). We next show that similar ideas apply even when asymptotic simplification
phenomena occur which makes necessary a comparison between solutions of different
equations.

We consider a class of second order quasilinear parabolic equations in which blow-up
phenomena occur. It corresponds to the well-known m-laplacian equation where reaction
and absorption terms appear:

up = (Jug|"ug)e +u? —Au? m>1, p>1, ¢>1, (2.1)

in the range of parameters 1 < ¢ < p < m. We assume that the initial data ug(z) is
continuous and bounded with compact support. It is known, see [3], that there exists
a class of initial data such that the corresponding solution blows-up at finite time for
every € RY. It was proved that in this case, asymptotic simplification occurs and the
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asymptotic behaviour of the solutions close to blow-up is described by the pure reaction-
diffusion equation, the absorption term being negligible. This makes necessary a kind
of like-intersection comparison between solutions of different equations. Let u(x,t) be a
solution of (2.1) which blows-up at finite time 7. We have the following.

PROPOSITION 2.1. If T is the blow-up time of the solution u(x,t) of the Cauchy problem
corresponding to equation (2.1) then

lu()]| > Ur(t) = [(p = (T - )] V@D, te0,T).

Proof. Assume for contradiction that the inequality fails at t = ¢3. Then, by the geometry
of U(t) this implies that u(z,ty) < U(tg) for every & € R and by continuity there exists
¢ small enough such that u(z,tg) < Ue(to) where Uc(t) = [(p — 1)(T + e — )]~/ =1,
Since Uc(t) is a supersolution of (2.1), we have from the Maximum Principle that the
same inequality holds for every ¢t > t;. Hence the solution u(z,t) is bounded and does
not blow-up at time 7', whence a contradiction follows. ]

We remark that the same estimate can be obtained without changes in the N-
dimensional case and for other ranges of the parameters where blow-up occurs at finite
time.

3. The Majorizing order-preserving equation. In this section we are going to
use the integral representation of the solution:

u(t) = Moy, (u) = b(t) * ug —|—/0 b(t —s) * f(u(s))ds, wo € X, (3.1)

At is the convolution representation of the continuous semigroup

with the infinitesimal generator A, i.e., u(t) is a fixed point of operator My, for any
t > 0. Then

where b(t) x ug = e
oAt

b($7 t) = th/ng(g)’ §= :L,/tl/2m’ (32)

is the fundamental solution (the self-similar kernel) of the linear operator 9/0t — A. The
function g is the unique radial solution of the elliptic equation

ngAg+L§-Vg+£g:0 in RV, / g(§)d¢ = 1. (3.3)
2m 2m RN
On the interval (0,T) of the classical solvability, both integral and differential equations
give the same solution u(x,t).
Now, as in [14], given the integral evolution equation (3.1), we construct the cor-
responding order-preserving majorizing equation. The function g satisfies the following
estimate, see [6].

PROPOSITION 3.1. Let m > 1. There exist constants D > 1 and d > 0 depending on m
and N such that

lg(n)| < DF(n) = Dwy e~ ™ in RV, (3.4)

where

~1
2m T
a:2m71€(1,2) and w1:</RNe din] dn) .
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We next introduce the majorizing kernel
ba, t) =t~ V2ME(), =/t (3.5)

which is strictly positive for t > 0. Therefore, the corresponding majorizing integral
equation

t
v(t) = b(t) * v + / b(t — s) * (Df(v(s)))ds, t>0, (3.6)
0
describes an order-preserving evolution with the usual partial order: given two solutions
v(t) and 0(t) of (3.6),
vo < Ty = v(t) <o(t) for t > 0.

The nonlinear term is a locally Lipschitz map and local existence and uniqueness are
straightforward, see [22, Chapt. 15]. In particular, we have the positivity property:

vg > 0,v90#Z0 = wv(t) >0 for ¢t > 0. (3.7

By comparing (3.1) and (3.6), we deduce the following result on the Comparison Principle
duality between the semilinear parabolic equation and the integral majorizing one, cf. [14].

THEOREM 3.2. The integral equation (3.6) is majorizing for the 2m-th order parabolic
equation (1.2) in the following sense:

Dlug(z)| < vo(z) in RY = |u(x,t)] <wv(x,t) for x €RYN, t>0. (3.8)

Proof. We have that v(t) solves the integral inequality

v(t) > b(t) * (D|ug|) Jr/o b(t —s) x (Df(v(s)))ds, t>0, (3.9)

On the other hand, it follows from (3.1) and PROPOSITION 3.1 that

fu(t)] < [b(t)] * [uo] + / bt — )] % | F(u(s))] s
(3.10)

< |Db(t)] * [uo] + / Dbt — )] * F(Ju(s)]) ds.

Using (3.9), (3.10), we conclude that the difference w = v — |u| satisfies the linear integral
inequality

w(t) > /t Db(t — 8) # (F(0(s)) — F(lu(s)]) ds = /t K(w(s)ds, t>0, (3.11)
0 0
with the positive integral operator

K(t)w(s) = Db(t — 5) * [f'(§(s))w(s)],

with strictly positive kernel. Here £(s) € (Ju(s)|,v(s)) denotes intermediate points ob-
tained via Lagrange’s formula of finite increments. Since D > 1, we have
w(0) = vo — |up| > vo — D|ug| > 0. If w(0) > e > 0 in RY, then the integral in-
equality with positive operator implies that w(t) > 0 for all ¢ > 0, see below. See [2] for
more details. |
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4. A lower blow-up rate estimate via the majorizing order equation. For
m > 1, the majorizing integral equation (3.6) is not generated by a semigroup unlike
the second-order case m = 1, where b(t) * up = e**uy > 0 and the semigroup is order-
preserving since b(t) > 0 for ¢ > 0. Therefore, solutions v(z,t) are not time-translational
invariant. Nevertheless, the spatially homogeneous solutions V' = V(t) satisfying the
integral equation (we recall that [b(t) = 1)

V(t) = V(0) + /Ot Df(V(s))ds, t >0,

and hence the ODE
V'=Df(V), t>0; V(0)>0, (4.1)

admit translation in time, so that V(¢ + 7) is a solution of the majorizing equation for
any constant time-shift 7.

In view of the order-preserving majorizing evolution, we now compare u(x,t) with
such spatially homogeneous solutions V' = V(¢) and obtain the following simple estimate
from above of the solutions and hence a lower estimate of the blow-up time.

COROLLARY 4.1. Denote my = sup |ug(z)| > 0. Then

lu(z, 1) S V() < o0, 0<t<t 1/00 dz (4.2)
u(z,t)| < 00, 0= — —_— .
D ng f(Z)
where V(t) > 0 is the solutions of the ODE (4.1) with initial data V(0) = Dmy.

Finally, we establish the lower estimate by means of an intersection-like property of
the solutions u(x,t) and Vp(t), Vp(T) = oo, having the same blow-up time 7. As we
mention above, the same estimates based on such intersection properties play a funda-

mental role for the blow-up analysis in the second-order case m = 1, see [21, Chapt. 4]
and references therein.

THEOREM 4.2. Let u(z,t) and V = Vr(t) solving (4.1) have the same finite blow-up time
T > 0. Then, for any t € [0,T), the function D|u(-,t)| intersects Vr(t), so that

lu()|loo > D™ Vp(t), te[0,T). (4.3)

Proof. Assume for contradiction that D|u(z,to)| < Vr(to) in RY for some to € [0,T). By
continuity, there exists a small € > 0 such that

D|u(x,t0)| < VT(tO — 6) = VT+€<tO), S RN.

By the comparison THEOREM 3.2 we have that |u(z,t)| < Vryc(t) for all ¢ € [to,T).
This means that at ¢ = T, the solution satisfies |u(z,T)| < Vr4e(T) < oo and hence is
uniformly bounded at its blow-up time, whence a contradiction follows. ]

As a consequence of the result we obtain the following lower L°°-estimate on blow-up
solutions:

[u(-,t)llee > D™MVr(t) = D~ exp{[(y = )D(T — )] ~/O~ V(1 +o(1))},

ast —T~.



140

(1]

(10]

(11]

(12]

(13]
(14]
(15]
[16]
(17]

(18]
(19]

20]
(21]

(22]

(23]

M. Chaves

REFERENCES

M. S. Birman and M. Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Space, D.
Reidel, Dordrecht/Tokyo, 1987.

M. Chaves and V. A. Galaktionov, Regional blow-up for a higher-order semilinear parabolic equa-
tion. European J. Appl. Math. 12(5) (2001), 601-623.

M. Chaves Blow-up phenomena arising in a reaction-absorption-diffusion equation with gradient
diffusivity, Ukr. Mat. Visn. 1(4) (2004), 583-597 .

C.R. Chester, Techniques in Partial Differential Equations, McGraw-Hill, New York, 1971.

Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev, and S. I. Pohozaev, On the necessary condi-
tions of existence to a quasilinear inequality in the half-space, C. R. Acad. Sci. Paris, 330, Série 1
(2000), 93-98.

S. D. Eidel’'man, Parabolic Systems, North-Holland Publ. Comp., Amsterdam/London, 1969.

S. Filippas and R. V. Kohn, Refined asymptotics for the blow-up of uy — Au = uP, Comm. Pure
Appl. Math., 45 (1992), 821-869.

H. Fujita, On the blowing up of solutions to the Cauchy problem for us = Au 4+ u'te, J. Fac. Sci.
Univ. Tokyo, Sect. IA, Math., 13 (1966), 109-124.

A. Friedman, Partial Differential Equations, Robert E. Krieger Publ. Comp., Malabar, 1983.

V. A. Galaktionov, The existence and non-ezistence of global solutions of boundary value problems
for quasilinear parabolic equations, USSR Comput. Math. and Math. Phys., 22 (1982), 88-07.

V. A. Galaktionov, On a spectrum of blow-up patterns for a higher-order semilinear parabolic
equations, Proc. Royal Soc. London, submitted. Preprint 00/16, School Math. Sci, University of
Bath, 1999 (available in www.maths.bath.ac.uk/~masjde/preprints).

V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, and A. A. Samarskii, Unbounded solutions
of semilinear parabolic equations, Keldysh Inst. Appl. Math. Acad. Sci. USSR, Preprint No. 161
(1979), MR 81c¢:35060.

V. A. Galaktionov, S. P. Kurdyumov, and A. A. Samarskii, On approzimate self-similar solutions
of a class of quasilinear heat equations with a source, Math. USSR Sbornik, 52 (1985), 155-180.
V. A. Galaktionov and S. I. Pohozaev, Existence and blow-up for higher-order semilinear parabolic
equations: majorizing order-preserving operators, preprint.

V. A. Galaktionov and J. L. Vazquez, Regional blow-up in a semilinear heat equation with conver-
gence to a Hamilton-Jacobi equation, STAM J. Math. Anal., 24 (1993), 1254-1276.

M. A. Herrero and J. J. L. Veldzquez, Blow-up behaviour of one-dimensional semilinear parabolic
equations, Ann. Inst. Henri Poincaré, Analyse non linéaire, 10 (1993), 131-189.

S. Kaplan, On the growth of solutions of quasilinear parabolic equations, Comm. Pure Appl. Math.,
16 (1963), 305-330.

H. A. Levine, The role of critical exponents in blow-up problems, SIAM Rev., 32 (1990), 262-288.
F. Merle and H. Zaag, Stability of the blow-up profile for equations of the type up = Au+ |u|P~u,
Duke Math. J., 86 (1997), 143-195.

M. A. Naimark, Linear Differential Operators, Part 1, Frederick Ungar Publ. Co., New York, 1967.
A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Blow-up in Quasilinear
Parabolic Equations, Walter de Gruyter, Berlin/New York, 1995.

M.E. Taylor, Partial Differential Equations III. Nonlinear Equations, Springer, New York/Tokyo,
1996.

J. J. L. Velazquez, Estimates on (N — 1)-dimensional Hausdorff measure of the blow-up set for a
semilinear heat equation, Indiana Univ. Math. J., 42 (1993), 445-476.



		webmaster@dml.cz
	2012-09-13T07:16:41+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




