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STRICT ϕ-DISCONJUGACY OF N-TH ORDER LINEAR
DIFFERENTIAL EQUATIONS WITH DELAYS∗

FRANTIŠEK JAROŠ†

Abstract. A generalization of the strict disconjugacy ( of n-th order linear differential equations with
delays ) is given. It is shown that for a class of vector function ϕ the interval of strict disconjugacy of each
differential equation does not degenerate into a one-point set. The relation between strict ϕ-disconjugacy
and the existence of solutions of multipoint boundary value problems is discussed.
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Disconjugate differential equations play an important role in the theory of ordinary
differential equations. There is an extensive literature on this topic (see, e.g. [1]). The
notion of disconjugacy for differential equations with delay was introduced in [3], [4] and
then it was generalized for vector differential equations with delays (see [6]), differential
inclusion with delay (see [8], [14]) and differential equations of neutral type (see [7]). The
generalized disconjugacy (strict ϕ-disconjugacy ) of differential equation with delay was
introduced in [9] for second order differential equations of the form

x′′ +N(t)x(t) +M(t)x(t−∆(t)) = 0.

The purpose of this paper is to generalize the notions of conjugate points and strictly
disconjugate differential equation with delays, to show that the interval of generalized
disconjugacy (strict ϕ-disconjugacy) of each n-order linear differential equation with de-
lays does not degenerate into one-point set and to show the connection between the strict
ϕ-disconjugacy and the solvability of a multipoint boundary value problem.

Let us consider the n-th order linear differential equation with delays

x(n)(t) +
n∑

i=1

m∑
j=1

aij(t)x(n−i)
(
t−∆ij(t)

)
= 0, n ≥ 1, (1)

with continuous coefficients aij(t) and delays ∆ij(t) ≥ 0 on an interval I=〈t0, T ),
T ≤ +∞, (i = 1, . . . , n ; j = 1, . . . ,m).

The fundamental initial value problem (FIVP) for equation (1) is defined
as follows:

Let a ∈ 〈t0, T ) and let a continuous initial value vector function

Φ(t) =
(
φ0(t), . . . , φn−1(t)

)
be given on the initial set Ea :=

n⋃
i=1

m⋃
j=1

Eij
a ∪ {a},

where Eij
a := {t−∆ij(t) : t−∆ij(t) < a , t ∈ I} , i = 1, . . . , n ; j = 1, . . . ,m.
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150 F. Jaroš

We have to find the solutions x(t) ∈ C n(I) of equation (1) satisfying initial value
conditions:

x(k)(a) = φk(a) = xk
a ,

(
x0

a, x
1
a, . . . , x

n−1
a

)
6= (0, 0, . . . , 0)

x(k)
(
t−∆ij(t)

)
= φk

(
t−∆ij(t)

)
, if t−∆ij(t) < a

( k = 0, 1, . . . , n− 1 ; i = 1, . . . , n ; j = 1, . . . ,m ) .

(2)

By the derivative x(k)(a), k = 1, . . . , n − 1 at the point a of the interval 〈a, T ) we
shall mean the right-hand point derivative and instead x(k)(a+ 0), we shall simply write
x(k)(a).

Under the above assumptions the FIVP (1), (2) has exactly one solution defined on
〈a, T ) ( see [5], [10], [11] ), which we shall denote by xΦ

(
t, a, x0

a, x
1
a, . . . , x

n−1
a

)
.

Besides FIVP for (1) we shall consider the homogenous initial value problem (HIVP):
Let a ∈ 〈t0, T ) and let a bounded continuous vector function Φ(t) =

(
φ0(t), . . . , φn−1(t)

)
,

φk(a) = 1 (k = 0, 1, . . . , n− 1) (3)

be defined on the initial set Ea.
Let xk

a (k = 0, 1, . . . , n− 1) be arbitrary real numbers. We have to find the solution
x(t) of (1) satisfying:

x(k)(a) = xk
a ,

(
x0

a, x
1
a, . . . , x

n−1
a

)
6= (0, 0, . . . , 0)

x(k)
(
t−∆ij(t)

)
= xk

a φk

(
t−∆ij(t)

)
, if t−∆ij(t) < a(

k = 0, 1, . . . , n− 1 ; i = 1, . . . , n ; j = 1, . . . ,m
)
.

(4)

As a consequence of the existence and uniqueness theorem for FIVP we have the
existence and uniqueness theorem for HIVP ( see [12, Theorem 1] ).

Remark 1. If the initial vector function Φ is fixed, then the set of all solutions of the
HIVP (1), (4) is an n-dimensional vector space which we shall denote by V n

Φ (a). The
base of V n

Φ (a) are any n solutions u1(t), . . . , un(t) ∈ V n
Φ (a) such that

W
(
u1(a), . . . , un(a)

)
=

∣∣∣∣∣∣∣∣∣
u1(a) . . . un(a)
u′1(a) . . . u′n(a)
. . . . . . . . .

u
(n−1)
1 (a) . . . u

(n−1)
n (a)

∣∣∣∣∣∣∣∣∣ 6= 0

(see [11, pp. 68]).

Let us consider the following HIVP:
Let ϕ(t) =

(
ϕ0(t), . . . , ϕn−1(t)

)
be a bounded continuous vector function such that

ϕk : (−∞, t0〉 −→ R,
ϕk(t0) = 1 ,∣∣ϕk(t)

∣∣ ≤ Bk, t ∈ (−∞, t0〉,(
k = 0, 1, . . . , n− 1

)
.

(5)
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Let a ∈ 〈t0, T ) and xk
a ∈ R

(
k = 0, 1, . . . , n − 1

)
. We have to find the solutions x(t)

of (1) satisfying

x(k)(a) = xk
a ,

(
x0

a, x
1
a, . . . , x

n−1
a

)
6= (0, 0, . . . , 0)

x(k)
(
t−∆ij(t)

)
= xk

a ϕk

(
t−∆ij(t)− a+ t0

)
, if t−∆ij(t) < a(

k = 0, 1, . . . , n− 1 ; i = 1, . . . , n ; j = 1, . . . ,m
)
.

(6)

By Remark 1 to any a ∈ 〈t0, T ) the n-dimensional vector space V n
ϕ (a) of solutions

HIVP (1), (5), (6) is associated.

Let x(t) ∈ V n
ϕ (a), x(t) 6≡ 0 on interval 〈a, T ). The n-th consecutive zero (including

multiplicity) of x(t), to the right of a will be denoted by η(x, a).

Definition 1. Let a ∈ 〈t0, T ). By the adjoint point to the point a with respect to (1)
and ϕ we shall mean the point

α(a) := inf
{
η(x, a) : x(t) ∈ V n

ϕ (a) and x(t) 6≡ 0
}
. (7)

Definition 2. The equation (1) is said to be strictly ϕ-disconjugate on an interval
I, iff

a ∈ I =⇒ α(a) /∈ I. (8)

Theorem 1. Let J = 〈α, β〉 be a compact interval. Then the equation (1) is strictly
ϕ-disconjugate on every subinterval J1 ⊆ J , whose lenght is less than

δ = min
{

1,
1
nK

}
, (9)

where

K := max
16i6n

max
t∈J

Bi

m∑
j=1

∣∣ aij(t)
∣∣ . (10)

Proof. We shall proof this theorem by contradiction.
We assume that the lenght of J1 is less than δ and the equation (1) is not strictly
ϕ-disconjugate on J1. Then there is a point a ∈ J1 and a solution x(t) ∈ V n

ϕ (a), which
has at least n zeros (including multiplicity ) on an interval J2 = 〈a,∞) ∩ J1. Thus by the
Mean Value Theorem x(k)(t) has at least (n− k) zeros on interval J2

(
k = 1, . . . , n− 1

)
.

Let for all t from the interval J2 the inequality t − ∆ij(t) < a, (i ∈ {1, . . . , n},
j ∈ {1, . . . ,m}) holds. Then using (5) and (6) we obtain for k = 0, . . . , n− 1∣∣∣x(k)

(
t−∆ij(t)

) ∣∣∣ 6
∣∣ xk

a

∣∣ Bk 6 Bk max
t ∈J2

∣∣∣x(k)(t)
∣∣∣ .

Otherwise, by the inequality t−∆ij(t) > a we have t−∆ij(t) ∈ J2 and this implies∣∣∣x(k)
(
t−∆ij(t)

) ∣∣∣ 6 max
t ∈J2

∣∣∣x(k)(t)
∣∣∣ .
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The assumption (5) yields Bk > 1 and from the last inequalities we get the inequality

max
t∈J2

∣∣x(k)
(
t−∆ij(t)

) ∣∣ 6 Bk max
t ∈J2

∣∣x(k)(t)
∣∣(

k = 0, 1, . . . , n− 1 ; i = 1, . . . , n ; j = 1, . . . ,m
)
.

(11)

We denote

µk := max
t∈J2

∣∣∣x(k)(t)
∣∣∣ , k = 0, 1, . . . , n

(
x(0)(t) := x(t) t ∈ J2

)
. (12)

Since x(t) is continuous function, from the existence at least n zeros on J2 we obtain
by Mean Value Theorem

|x(t) | = |x(t)− x(ξ) | = |x′(η)(t− ξ) | ≤ µ1 | t− ξ | ∀ t ∈ J2,

where ξ is the zero of the solution x(t) and η is any point on the nondegenerate interval
with the end points t and ξ. Therefore

µ0 ≤ µ1δ.

Likewise we obtain

µk ≤ µk+1δ, k = 1, . . . , n− 1.

If µk > 0 then

µk < µk+1δ .

Since x(t) 6≡ 0 and the inequality µ0 > 0 holds, we get

0 < µk < δn−k µn, k = 0, 1, . . . , n− 1. (13)

On the other hand, from (1), (9), (11) and (13) we have

µn ≤
n∑

i=1

m∑
j=1

∣∣ aij(t)
) ∣∣ Bi µn−i ≤ K

n∑
i=1

µn−i < K
(
δ + δ2 + · · ·+ δn

)
µn ≤ nK δ µn,

i.e.

1 < nK δ ,

which is a contradiction with (9) and thus proof of the theorem is complete.

Corollary 1. If ϕ(t) =
(
ϕ0(t), . . . , ϕn−1(t)

)
, ϕk(t) ≡ 1, t ∈ (−∞, t0〉, k = 0, 1,

. . . , n− 1, then the notions of strictly ϕ-disconjugate differential equation with delay and
strictly disconjugate differential equation with delay coincide (see [5], [7]).

Corollary 2. If ∆ij(t) ≡ 0, t ∈ 〈t0, T ), i = 1, . . . , n, j = 1, . . . ,m, then the notions
of strictly ϕ-disconjugate differential equation with delay and disconjugate differential
equation without delay (see [1]) coincide.
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Let us define the multipoint boundary value problem (BVP) for the equation (1):
Let τ0 ∈ 〈t0, T ) ,

τ1, τ2, . . . , τp ∈ (τ0, T ), where τ0 < τ1 < τ2 < · · · < τp; ( p ≤ n ), (14)

r1 + · · ·+ rp = n , r1, . . . , rp ∈ N (15)

and let
β1

1 , . . . , β
r1
1 , . . . , β

1
p , . . . , β

rp
p ∈ R. (16)

The problem is to find a solution x : 〈t0, T ) → R of the equation (1) which satisfies the
conditions:

x(νl−1)(τl) = βνl

l ; νl = 1, . . . , rl; l = 1, . . . , p. (17)

Theorem 2. The equation (1) is strictly ϕ-disconjugate on an interval I, iff each (BVP)
has exactly one solution x(t), such that x(t) ∈ V n

ϕ (τ0).

Proof. Any solution x(t) ∈ V n
ϕ (τ0) can be written in the form

x(t) =
n∑

k=1

αk uk(t, τ0),

where uk(t, τ0) ∈ V n
ϕ (τ0); k = 1, . . . , n such that

W
(
u1(τ0, τ0), . . . , un(τ0, τ0)

)
=

∣∣∣∣∣∣∣∣∣
u1(τ0, τ0) . . . un(τ0, τ0)
u′1(τ0, τ0) . . . u′n(τ0, τ0)

. . . . . . . . .

u
(n−1)
1 (τ0, τ0) . . . u

(n−1)
n (τ0, τ0)

∣∣∣∣∣∣∣∣∣ 6= 0 ,

(see Remark 1).
We denote

A =



u1(τ1, τ0) · · · un(τ1, τ0)

· · · · · · · · ·

u
(r1−1)
1 (τ1, τ0) · · · u

(r1−1)
n (τ1, τ0)

u1(τ2, τ0) · · · un(τ2, τ0)

· · · · · · · · ·

u
(rp−1)
1 (τp, τ0) · · · u

(rp−1)
n (τp, τ0)


, α =



α1

α2

...

αn


, β =



β1
1

...

βr1
1

β1
2

...

β
rp
p


.

Then we have to choose α such that

A α = β . (18)

This is possible for each β if and only if the corresponding homogenous system

A α = 0 (19)

has only trivial solution.
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This occurs if and only if the differential equation (1) is strictly ϕ-disconjugate on
I (then the trivial solution is the only solution x(t) ∈ V n

ϕ (τ0) which has n zeros on I
(including multiplicity), see [5], [7]).

Definition 3. Let Ψ(t) =
(
ψ0(t), ψ1(t), . . . , ψn−1(t)

)
be an admissible vector function

(continuous and bounded) defined on the Eτ0 . Then

H
(
ϕ, τ0,Ψ

)
:= { (ψ0(t) + c0 ϕ0(t− τ0 + t0), ψ1(t) + c1 ϕ1(t− τ0 + t0), . . .

. . . , ψn−1(t) + cn−1 ϕn−1(t− τ0 + t0)) , c0, c1, . . . , cn−1 ∈ R } .

Let x(t) be a solution of (1). Then we shall write

x(t) ∈ H
(
ϕ, τ0,Ψ

)
iff there are constants c̄0, c̄1, . . . , c̄n−1 ∈ R such that x(t) is a unique solution
of FIVP for equation (1) which is determined by the initial vector function(
ψ0(t)+ c̄0 ϕ0(t− τ0 + t0), ψ1(t)+ c̄1 ϕ1(t− τ0 + t0), . . . , ψn−1(t)+ c̄n−1 ϕn−1(t− τ0 + t0)

)
,

t ∈ Eτ0

and constants

x(k)(τ0) = x k
τ0

= ψk(τ0) + c̄k ϕk(t0) , k = 0, 1, . . . , n− 1. (20)

Theorem 3. Differential equation (1) is strictly ϕ-disconjugate on the interval I=〈t0, T )
if and only if for each τ0 ∈ I that satisfies (14) and for each admissible vector func-
tion Ψ(t) defined on the initial set Eτ0 (continuous and bounded), every boundary value
problem (1), (17) has exactly one solution x(t) such that

x(t) ∈ H
(
ϕ, τ0,Ψ

)
.

Proof. Denote by x (t, τ0, ψ0, ψ1, . . . , ψn−1) the solution of (1) determined by the initial
vector function Ψ(t) =

(
ψ0(t), ψ1(t), . . . , ψn−1(t)

)
. Now Theorem 3 follows from the

uniqueness of the solution of FIVP, Theorem 2 and from the identity

x
(
t , τ0, ψ0(t) + c0ϕ0(t− τ0 + t0), ψ1(t) + c1ϕ1(t− τ0 + t0), . . .

. . . , ψn−1(t) + cn−1ϕn−1(t− τ0 + t0)
)

= x
(
t , τ0, ψ0(t), ψ1(t), . . . , ψn−1(t)

)
+x

(
t, τ0, c0ϕ0(t− τ0 + t0), c1ϕ1(t− τ0 + t0), . . . , cn−1ϕn−1(t− τ0 + t0)

)
.
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