EQUADIFF 11

František Jaroš

Strict φ disconjugacy of n-th order linear differential equations with delays

In: Marek Fila and Angela Handlovičová and Karol Mikula and Milan Medved’ and Pavol Quittner and Daniel Ševčovič (eds.): Proceedings of Equadiff 11, International Conference on Differential Equations. Czecho-Slovak series, Bratislava, July 25-29, 2005, [Part 2] Minisymposia and contributed talks. Comenius University Press, Bratislava, 2007. Presented in electronic form on the Internet. pp. 149--155.

Persistent URL: http://dml.cz/dmlcz/700405

Terms of use:

(C) Comenius University, 2007

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

STRICT φ-DISCONJUGACY OF N-TH ORDER LINEAR DIFFERENTIAL EQUATIONS WITH DELAYS*

FRANTIŠEK JAROŠ ${ }^{\dagger}$

Abstract

A generalization of the strict disconjugacy (of n-th order linear differential equations with delays) is given. It is shown that for a class of vector function $\boldsymbol{\varphi}$ the interval of strict disconjugacy of each differential equation does not degenerate into a one-point set. The relation between strict $\boldsymbol{\varphi}$-disconjugacy and the existence of solutions of multipoint boundary value problems is discussed.

Key words. Linear differential equations with delays, initial value problem for differential equations with delays, multipoint boundary value problem for linear differential equation with delays

AMS subject classifications. $34 \mathrm{C} 10,34 \mathrm{~K} 10$
Disconjugate differential equations play an important role in the theory of ordinary differential equations. There is an extensive literature on this topic (see, e.g. [1]). The notion of disconjugacy for differential equations with delay was introduced in [3], [4] and then it was generalized for vector differential equations with delays (see [6]), differential inclusion with delay (see [8], [14]) and differential equations of neutral type (see [7]). The generalized disconjugacy (strict $\boldsymbol{\varphi}$-disconjugacy) of differential equation with delay was introduced in [9] for second order differential equations of the form

$$
x^{\prime \prime}+N(t) x(t)+M(t) x(t-\Delta(t))=0
$$

The purpose of this paper is to generalize the notions of conjugate points and strictly disconjugate differential equation with delays, to show that the interval of generalized disconjugacy (strict $\boldsymbol{\varphi}$-disconjugacy) of each n-order linear differential equation with delays does not degenerate into one-point set and to show the connection between the strict $\boldsymbol{\varphi}$-disconjugacy and the solvability of a multipoint boundary value problem.

Let us consider the n-th order linear differential equation with delays

$$
\begin{equation*}
x^{(n)}(t)+\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i j}(t) x^{(n-i)}\left(t-\Delta_{i j}(t)\right)=0, \quad n \geq 1 \tag{1}
\end{equation*}
$$

with continuous coefficients $a_{i j}(t)$ and delays $\Delta_{i j}(t) \geq 0$ on an interval $\mathbf{I}=\left\langle t_{0}, T\right)$, $T \leq+\infty,(i=1, \ldots, n ; j=1, \ldots, m)$.

The fundamental initial value problem (FIVP) for equation (1) is defined as follows:

Let $a \in\left\langle t_{0}, T\right)$ and let a continuous initial value vector function $\boldsymbol{\Phi}(t)=\left(\phi_{0}(t), \ldots, \phi_{n-1}(t)\right)$ be given on the initial set $E_{a}:=\bigcup_{i=1}^{n} \bigcup_{j=1}^{m} E_{a}^{i j} \cup\{a\}$, where $E_{a}^{i j}:=\left\{t-\Delta_{i j}(t): t-\Delta_{i j}(t)<a, t \in \mathbf{I}\right\}, \quad i=1, \ldots, n ; j=1, \ldots, m$.

[^0]We have to find the solutions $x(t) \in \mathbf{C}^{\mathbf{n}}(\mathbf{I})$ of equation (1) satisfying initial value conditions:

$$
\begin{align*}
& x^{(k)}(a)=\phi_{k}(a)=x_{a}^{k}, \quad\left(x_{a}^{0}, x_{a}^{1}, \ldots, x_{a}^{n-1}\right) \neq(0,0, \ldots, 0) \\
& x^{(k)}\left(t-\Delta_{i j}(t)\right)=\phi_{k}\left(t-\Delta_{i j}(t)\right), \quad \text { if } t-\Delta_{i j}(t)<a \tag{2}\\
& (k=0,1, \ldots, n-1 ; i=1, \ldots, n ; j=1, \ldots, m)
\end{align*}
$$

By the derivative $x^{(k)}(a), k=1, \ldots, n-1$ at the point a of the interval $\langle a, T)$ we shall mean the right-hand point derivative and instead $x^{(k)}(a+0)$, we shall simply write $x^{(k)}(a)$.

Under the above assumptions the FIVP (1), (2) has exactly one solution defined on $\langle a, T)($ see $[5],[10],[11])$, which we shall denote by $x_{\Phi}\left(t, a, x_{a}^{0}, x_{a}^{1}, \ldots, x_{a}^{n-1}\right)$.

Besides FIVP for (1) we shall consider the homogenous initial value problem (HIVP): Let $a \in\left\langle t_{0}, T\right)$ and let a bounded continuous vector function $\boldsymbol{\Phi}(t)=\left(\phi_{0}(t), \ldots, \phi_{n-1}(t)\right)$,

$$
\begin{equation*}
\phi_{k}(a)=1 \quad(k=0,1, \ldots, n-1) \tag{3}
\end{equation*}
$$

be defined on the initial set E_{a}.
Let $x_{a}^{k}(k=0,1, \ldots, n-1)$ be arbitrary real numbers. We have to find the solution $x(t)$ of (1) satisfying:

$$
\begin{align*}
& x^{(k)}(a)=x_{a}^{k}, \quad\left(x_{a}^{0}, x_{a}^{1}, \ldots, x_{a}^{n-1}\right) \neq(0,0, \ldots, 0) \\
& x^{(k)}\left(t-\Delta_{i j}(t)\right)=x_{a}^{k} \phi_{k}\left(t-\Delta_{i j}(t)\right), \quad \text { if } t-\Delta_{i j}(t)<a \tag{4}\\
& (k=0,1, \ldots, n-1 ; i=1, \ldots, n ; j=1, \ldots, m)
\end{align*}
$$

As a consequence of the existence and uniqueness theorem for FIVP we have the existence and uniqueness theorem for HIVP (see [12, Theorem 1]).

REmARK 1. If the initial vector function $\boldsymbol{\Phi}$ is fixed, then the set of all solutions of the HIVP (1), (4) is an n-dimensional vector space which we shall denote by $V_{\Phi}^{n}(a)$. The base of $V_{\Phi}^{n}(a)$ are any n solutions $u_{1}(t), \ldots, u_{n}(t) \in V_{\Phi}^{n}(a)$ such that

$$
W\left(u_{1}(a), \ldots, u_{n}(a)\right)=\left|\begin{array}{ccc}
u_{1}(a) & \ldots & u_{n}(a) \\
u_{1}^{\prime}(a) & \ldots & u_{n}^{\prime}(a) \\
\ldots & \ldots & \ldots \\
u_{1}^{(n-1)}(a) & \ldots & u_{n}^{(n-1)}(a)
\end{array}\right| \neq 0
$$

(see [11, pp. 68]).
Let us consider the following HIVP:
Let $\varphi(t)=\left(\varphi_{0}(t), \ldots, \varphi_{n-1}(t)\right)$ be a bounded continuous vector function such that

$$
\begin{align*}
& \varphi_{k}:\left(-\infty, t_{0}\right\rangle \longrightarrow \mathbb{R} \\
& \varphi_{k}\left(t_{0}\right)=1 \\
& \left|\varphi_{k}(t)\right| \leq B_{k}, \quad t \in\left(-\infty, t_{0}\right\rangle \tag{5}\\
& (k=0,1, \ldots, n-1)
\end{align*}
$$

Let $a \in\left\langle t_{0}, T\right)$ and $x_{a}^{k} \in \mathbb{R}(k=0,1, \ldots, n-1)$. We have to find the solutions $x(t)$ of (1) satisfying

$$
\begin{align*}
& x^{(k)}(a)=x_{a}^{k}, \quad\left(x_{a}^{0}, x_{a}^{1}, \ldots, x_{a}^{n-1}\right) \neq(0,0, \ldots, 0) \\
& x^{(k)}\left(t-\Delta_{i j}(t)\right)=x_{a}^{k} \varphi_{k}\left(t-\Delta_{i j}(t)-a+t_{0}\right), \quad \text { if } t-\Delta_{i j}(t)<a \tag{6}\\
& (k=0,1, \ldots, n-1 ; i=1, \ldots, n ; j=1, \ldots, m)
\end{align*}
$$

By Remark 1 to any $a \in\left\langle t_{0}, T\right)$ the n-dimensional vector space $V_{\varphi}^{n}(a)$ of solutions HIVP (1), (5), (6) is associated.

Let $x(t) \in V_{\varphi}^{n}(a), x(t) \not \equiv 0$ on interval $\langle a, T)$. The n-th consecutive zero (including multiplicity) of $x(t)$, to the right of a will be denoted by $\boldsymbol{\eta}(\boldsymbol{x}, \boldsymbol{a})$.

Definition 1. Let $a \in\left\langle t_{0}, T\right)$. By the adjoint point to the point a with respect to (1) and φ we shall mean the point

$$
\begin{equation*}
\boldsymbol{\alpha}(\boldsymbol{a}):=\inf \left\{\eta(x, a): x(t) \in V_{\boldsymbol{\varphi}}^{n}(a) \text { and } x(t) \not \equiv 0\right\} . \tag{7}
\end{equation*}
$$

Definition 2. The equation (1) is said to be strictly $\boldsymbol{\varphi}$-disconjugate on an interval I, iff

$$
\begin{equation*}
a \in \mathbf{I} \Longrightarrow \alpha(a) \notin \mathbf{I} . \tag{8}
\end{equation*}
$$

Theorem 1. Let $\boldsymbol{J}=\langle\alpha, \beta\rangle$ be a compact interval. Then the equation (1) is strictly $\boldsymbol{\varphi}$-disconjugate on every subinterval $\boldsymbol{J}_{\mathbf{1}} \subseteq \boldsymbol{J}$, whose lenght is less than

$$
\begin{equation*}
\delta=\min \left\{1, \frac{1}{n K}\right\} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
K:=\max _{1 \leqslant i \leqslant n} \max _{t \in J}\left\{B_{i} \sum_{j=1}^{m}\left|a_{i j}(t)\right|\right\} \tag{10}
\end{equation*}
$$

Proof. We shall proof this theorem by contradiction.
We assume that the lenght of $\boldsymbol{J}_{\mathbf{1}}$ is less than δ and the equation (1) is not strictly $\boldsymbol{\varphi}$-disconjugate on $\boldsymbol{J}_{\mathbf{1}}$. Then there is a point $a \in \boldsymbol{J}_{\mathbf{1}}$ and a solution $x(t) \in V_{\varphi}^{n}(a)$, which has at least n zeros (including multiplicity) on an interval $\boldsymbol{J}_{\mathbf{2}}=\langle a, \infty) \cap \boldsymbol{J}_{\mathbf{1}}$. Thus by the Mean Value Theorem $x^{(k)}(t)$ has at least $(n-k)$ zeros on interval $\boldsymbol{J}_{\mathbf{2}}(k=1, \ldots, n-1)$.

Let for all t from the interval $\boldsymbol{J}_{\mathbf{2}}$ the inequality $t-\Delta_{i j}(t)<a,(i \in\{1, \ldots, n\}$, $j \in\{1, \ldots, m\})$ holds. Then using (5) and (6) we obtain for $k=0, \ldots, n-1$

$$
\left|x^{(k)}\left(t-\Delta_{i j}(t)\right)\right| \leqslant\left|x_{a}^{k}\right| B_{k} \leqslant B_{k} \max _{t \in J_{\mathbf{2}}}\left|x^{(k)}(t)\right| .
$$

Otherwise, by the inequality $t-\Delta_{i j}(t) \geqslant a$ we have $t-\Delta_{i j}(t) \in \boldsymbol{J}_{\mathbf{2}}$ and this implies

$$
\left|x^{(k)}\left(t-\Delta_{i j}(t)\right)\right| \leqslant \max _{t \in \boldsymbol{J}_{\mathbf{2}}}\left|x^{(k)}(t)\right| .
$$

The assumption (5) yields $B_{k} \geqslant 1$ and from the last inequalities we get the inequality

$$
\begin{align*}
& \max _{t \in \boldsymbol{J}_{2}}\left|x^{(k)}\left(t-\Delta_{i j}(t)\right)\right| \leqslant B_{k} \max _{t \in \boldsymbol{J}_{2}}\left|x^{(k)}(t)\right| \tag{11}\\
& (k=0,1, \ldots, n-1 ; i=1, \ldots, n ; j=1, \ldots, m)
\end{align*}
$$

We denote

$$
\begin{equation*}
\mu_{k}:=\max _{t \in \boldsymbol{J}_{\mathbf{2}}}\left|x^{(k)}(t)\right|, \quad k=0,1, \ldots, n \quad\left(x^{(0)}(t):=x(t) \quad t \in \boldsymbol{J}_{\mathbf{2}}\right) \tag{12}
\end{equation*}
$$

Since $x(t)$ is continuous function, from the existence at least n zeros on $\boldsymbol{J}_{\mathbf{2}}$ we obtain by Mean Value Theorem

$$
|x(t)|=|x(t)-x(\xi)|=\left|x^{\prime}(\eta)(t-\xi)\right| \leq \mu_{1}|t-\xi| \quad \forall t \in \boldsymbol{J}_{\mathbf{2}}
$$

where ξ is the zero of the solution $x(t)$ and η is any point on the nondegenerate interval with the end points t and ξ. Therefore

$$
\mu_{0} \leq \mu_{1} \delta
$$

Likewise we obtain

$$
\mu_{k} \leq \mu_{k+1} \delta, \quad k=1, \ldots, n-1
$$

If $\mu_{k}>0$ then

$$
\mu_{k}<\mu_{k+1} \delta
$$

Since $x(t) \not \equiv 0$ and the inequality $\mu_{0}>0$ holds, we get

$$
\begin{equation*}
0<\mu_{k}<\delta^{n-k} \mu_{n}, \quad k=0,1, \ldots, n-1 \tag{13}
\end{equation*}
$$

On the other hand, from (1), (9), (11) and (13) we have

$$
\left.\mu_{n} \leq \sum_{i=1}^{n} \sum_{j=1}^{m} \mid a_{i j}(t)\right) \mid B_{i} \mu_{n-i} \leq K \sum_{i=1}^{n} \mu_{n-i}<K\left(\delta+\delta^{2}+\cdots+\delta^{n}\right) \mu_{n} \leq n K \delta \mu_{n}
$$

i.e.

$$
1<n K \delta
$$

which is a contradiction with (9) and thus proof of the theorem is complete.
Corollary 1. If $\boldsymbol{\varphi}(t)=\left(\varphi_{0}(t), \ldots, \varphi_{n-1}(t)\right), \varphi_{k}(t) \equiv 1, t \in\left(-\infty, t_{0}\right\rangle, k=0,1$, $\ldots, n-1$, then the notions of strictly φ-disconjugate differential equation with delay and strictly disconjugate differential equation with delay coincide (see [5], [7]).

Corollary 2. If $\Delta_{i j}(t) \equiv 0, t \in\left\langle t_{0}, T\right), i=1, \ldots, n, j=1, \ldots, m$, then the notions of strictly φ-disconjugate differential equation with delay and disconjugate differential equation without delay (see [1]) coincide.

Let us define the multipoint boundary value problem (BVP) for the equation (1): Let $\tau_{0} \in\left\langle t_{0}, T\right)$,

$$
\begin{align*}
& \tau_{1}, \tau_{2}, \ldots, \tau_{p} \in\left(\tau_{0}, T\right), \text { where } \tau_{0}<\tau_{1}<\tau_{2}<\cdots<\tau_{p} ;(p \leq n) \tag{14}\\
& r_{1}+\cdots+r_{p}=n, r_{1}, \ldots, r_{p} \in \mathbb{N} \tag{15}
\end{align*}
$$

and let

$$
\begin{equation*}
\beta_{1}^{1}, \ldots, \beta_{1}^{r_{1}}, \ldots, \beta_{p}^{1}, \ldots, \beta_{p}^{r_{p}} \in \mathbb{R} \tag{16}
\end{equation*}
$$

The problem is to find a solution $x:\left\langle t_{0}, T\right) \rightarrow \mathbb{R}$ of the equation (1) which satisfies the conditions:

$$
\begin{equation*}
x^{\left(\nu_{l}-1\right)}\left(\tau_{l}\right)=\beta_{l}^{\nu_{l}} ; \quad \nu_{l}=1, \ldots, r_{l} ; \quad l=1, \ldots, p . \tag{17}
\end{equation*}
$$

Theorem 2. The equation (1) is strictly $\boldsymbol{\varphi}$-disconjugate on an interval \boldsymbol{I}, iff each ($\boldsymbol{B} \boldsymbol{V} \boldsymbol{P}$) has exactly one solution $x(t)$, such that $x(t) \in V_{\varphi}^{n}\left(\tau_{0}\right)$.
Proof. Any solution $x(t) \in V_{\varphi}^{n}\left(\tau_{0}\right)$ can be written in the form

$$
x(t)=\sum_{k=1}^{n} \alpha_{k} u_{k}\left(t, \tau_{0}\right)
$$

where $u_{k}\left(t, \tau_{0}\right) \in V_{\varphi}^{n}\left(\tau_{0}\right) ; k=1, \ldots, n$ such that

$$
W\left(u_{1}\left(\tau_{0}, \tau_{0}\right), \ldots, u_{n}\left(\tau_{0}, \tau_{0}\right)\right)=\left|\begin{array}{ccc}
u_{1}\left(\tau_{0}, \tau_{0}\right) & \ldots & u_{n}\left(\tau_{0}, \tau_{0}\right) \\
u_{1}^{\prime}\left(\tau_{0}, \tau_{0}\right) & \ldots & u_{n}^{\prime}\left(\tau_{0}, \tau_{0}\right) \\
\ldots & \ldots & \ldots \\
u_{1}^{(n-1)}\left(\tau_{0}, \tau_{0}\right) & \ldots & u_{n}^{(n-1)}\left(\tau_{0}, \tau_{0}\right)
\end{array}\right| \neq 0
$$

(see Remark 1).
We denote

$$
\mathbf{A}=\left(\begin{array}{rcr}
u_{1}\left(\tau_{1}, \tau_{0}\right) & \ldots & u_{n}\left(\tau_{1}, \tau_{0}\right) \\
& \ldots \ldots . & \\
u_{1}^{\left(r_{1}-1\right)}\left(\tau_{1}, \tau_{0}\right) & \ldots & u_{n}^{\left(r_{1}-1\right)}\left(\tau_{1}, \tau_{0}\right) \\
u_{1}\left(\tau_{2}, \tau_{0}\right) & \ldots & u_{n}\left(\tau_{2}, \tau_{0}\right) \\
& \ldots \ldots . & \\
u_{1}^{\left(r_{p}-1\right)}\left(\tau_{p}, \tau_{0}\right) & \ldots & u_{n}^{\left(r_{p}-1\right)}\left(\tau_{p}, \tau_{0}\right)
\end{array}\right), \quad \boldsymbol{\alpha}=\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\vdots \\
\alpha_{n}
\end{array}\right), \quad \boldsymbol{\beta}=\left(\begin{array}{c}
\beta_{1}^{1} \\
\beta_{1}^{r_{1}} \\
\beta_{2}^{1} \\
\vdots \\
\beta_{p}^{r_{p}}
\end{array}\right) .
$$

Then we have to choose $\boldsymbol{\alpha}$ such that

$$
\begin{equation*}
\mathbf{A} \boldsymbol{\alpha}=\boldsymbol{\beta} \tag{18}
\end{equation*}
$$

This is possible for each $\boldsymbol{\beta}$ if and only if the corresponding homogenous system

$$
\begin{equation*}
\mathbf{A} \boldsymbol{\alpha}=\mathbf{0} \tag{19}
\end{equation*}
$$

has only trivial solution.

This occurs if and only if the differential equation (1) is strictly $\boldsymbol{\varphi}$-disconjugate on I (then the trivial solution is the only solution $x(t) \in V_{\varphi}^{n}\left(\tau_{0}\right)$ which has n zeros on \mathbf{I} (including multiplicity), see [5], [7]).
Definition 3. Let $\boldsymbol{\Psi}(t)=\left(\psi_{0}(t), \psi_{1}(t), \ldots, \psi_{n-1}(t)\right)$ be an admissible vector function (continuous and bounded) defined on the $E_{\tau_{0}}$. Then

$$
\begin{aligned}
\boldsymbol{H}\left(\boldsymbol{\varphi}, \tau_{0}, \boldsymbol{\Psi}\right):=\{ & \left(\psi_{0}(t)+c_{0} \varphi_{0}\left(t-\tau_{0}+t_{0}\right), \psi_{1}(t)+c_{1} \varphi_{1}\left(t-\tau_{0}+t_{0}\right), \ldots\right. \\
& \left.\left.\ldots, \psi_{n-1}(t)+c_{n-1} \varphi_{n-1}\left(t-\tau_{0}+t_{0}\right)\right), c_{0}, c_{1}, \ldots, c_{n-1} \in \mathbb{R}\right\} .
\end{aligned}
$$

Let $x(t)$ be a solution of (1). Then we shall write

$$
x(t) \in \boldsymbol{H}\left(\boldsymbol{\varphi}, \tau_{0}, \boldsymbol{\Psi}\right)
$$

iff there are constants $\bar{c}_{0}, \bar{c}_{1}, \ldots, \bar{c}_{n-1} \in \mathbb{R}$ such that $x(t)$ is a unique solution of FIVP for equation (1) which is determined by the initial vector function

$$
\begin{gathered}
\left(\psi_{0}(t)+\bar{c}_{0} \varphi_{0}\left(t-\tau_{0}+t_{0}\right), \psi_{1}(t)+\bar{c}_{1} \varphi_{1}\left(t-\tau_{0}+t_{0}\right), \ldots, \psi_{n-1}(t)+\bar{c}_{n-1} \varphi_{n-1}\left(t-\tau_{0}+t_{0}\right)\right), \\
t \in E_{\tau_{0}}
\end{gathered}
$$

and constants

$$
\begin{equation*}
x^{(k)}\left(\tau_{0}\right)=x_{\tau_{0}}^{k}=\psi_{k}\left(\tau_{0}\right)+\bar{c}_{k} \varphi_{k}\left(t_{0}\right), \quad k=0,1, \ldots, n-1 \tag{20}
\end{equation*}
$$

Theorem 3. Differential equation (1) is strictly $\boldsymbol{\varphi}$-disconjugate on the interval $\boldsymbol{I}=\left\langle t_{0}, T\right)$ if and only if for each $\tau_{0} \in \boldsymbol{I}$ that satisfies (14) and for each admissible vector function $\boldsymbol{\Psi}(t)$ defined on the initial set $E_{\tau_{0}}$ (continuous and bounded), every boundary value problem (1), (17) has exactly one solution $x(t)$ such that

$$
x(t) \in \boldsymbol{H}\left(\varphi, \tau_{0}, \mathbf{\Psi}\right)
$$

Proof. Denote by $x\left(t, \tau_{0}, \psi_{0}, \psi_{1}, \ldots, \psi_{n-1}\right)$ the solution of (1) determined by the initial vector function $\boldsymbol{\Psi}(t)=\left(\psi_{0}(t), \psi_{1}(t), \ldots, \psi_{n-1}(t)\right)$. Now Theorem 3 follows from the uniqueness of the solution of FIVP, Theorem 2 and from the identity

$$
\begin{aligned}
& x\left(t, \tau_{0}, \psi_{0}(t)+c_{0} \varphi_{0}(t-\right.\left.\tau_{0}+t_{0}\right), \psi_{1}(t)+c_{1} \varphi_{1}\left(t-\tau_{0}+t_{0}\right), \ldots \\
&\left.\ldots, \psi_{n-1}(t)+c_{n-1} \varphi_{n-1}\left(t-\tau_{0}+t_{0}\right)\right) \\
&=x\left(t, \tau_{0}, \psi_{0}(t), \psi_{1}(t), \ldots, \psi_{n-1}(t)\right) \\
&+x\left(t, \tau_{0}, c_{0} \varphi_{0}\left(t-\tau_{0}+t_{0}\right), c_{1} \varphi_{1}\left(t-\tau_{0}+t_{0}\right), \ldots, c_{n-1} \varphi_{n-1}\left(t-\tau_{0}+t_{0}\right)\right) .
\end{aligned}
$$

REFERENCES

[1] Coppel, W. A., Disconjugacy. Lecture Notes in Mathematics, Springer-Verlag, Berlin-HeidelbergNew York, 1981.
[2] El'sgol'c, L. E. and Norkin, S. B. Vvedenie v teoriju differenciaľnych uravnenij s otklonjajuščimsja argumentom. Nauka, Moskva, 1971 (in Russian).
[3] Haščák, A., Disconjugacy of differential equations with delay. Acta Mathematica Universitatis Comenianae, LIV-LV (1988), 73-79.
[4] Haščák, A., Criteria for disconjugacy of a differential equations with delay. Acta Mathematica Universitatis Comenianae, LIV-LV (1988), 81-88.
[5] Haščák, A., Disconjugacy and multipoint boundary value problems for linear differential equations with delay. Czechoslovak Math. Journal, 39(114) (1989), 70-77.
[6] Haščák, A., Strict disconjugacy criteria for linear vector differential equations with delay. Demonstratio Mathematica, XXVIII(2) (1995), 275-284.
[7] Haščák, A., Disconjugacy and multipoint boundary value problems for linear differential equations of neutral type. Journal of Math. Anal. and appl. 119 (1996), 323-333.
[8] Haščák, A. and Schrötter, Š., Strict disconjugacy of differential inclusion with delay. Bull. for Appl. and Computing Math., 119 (1997), 53-59.
[9] Haščák, A. and Schrötter, Š., Strict φ-disconjugacy of differential equations with delay. Studies of Univ. in Žilina (Math. and Ph. Ser.), 13 (2001), 95-100.
[10] Kamenskij, G. A., Norkin, S. B. and Elsgolc, L. E., Nekotorye napravlenija razvitija teorii differencial'nych uravnenij s otklonjajuščimsja argumentom. Trudy seminara po teorii differencialnych uravnenij s otklonjajuščimsja argumentom, 6 (1968), 3-36, (in Russian).
[11] Medžitov, M., Norkin, S. B. and Turdiev, T., Odnorodnaja načal'naja zadača dlja linejnych differencial'nych uravnenij s zapazdyvajuščim argumentom. Trudy seminara po teorii differencialnych uravnenij s otklonjajuščimsja argumentom, 6 (1968), 67-77, (in Russian).
[12] Myškis, A. D., Linejnye differencial̆nye uravnenija s zapazdyvajuščim argumentom. M.-L. GosTechIzdat, 1951 (in Russian).
[13] Norkin, S. B., Differencial̆nye uravnenija vtorogo porjadka s zapazdyvajuščim argumentom. Nauka, Moskva, 1965 (in Russian).
[14] Šoltés, V. and Schrötter, ŚS., Disconjugacy of differential inclusion with delay. Bull. for Appl. and Computing Math., 119 (1997), 127-133.

[^0]: ${ }^{*}$ This work was supported by the Slovak Grant Agency VEGA, Grant No.: 1/2001/05.
 ${ }^{\dagger}$ Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia (fjaros@fmph.uniba.sk)

