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NONLINEAR OSCILLATIONS OF COMPLETELY
RESONANT WAVE EQUATIONS∗

MASSIMILIANO BERTI†

Abstract. We present recent existence and multiplicity results of small amplitude periodic solutions
of completely resonant nonlinear wave equations with frequencies ω belonging to a Cantor-like set of
asymptotically full measure. The proofs rely on a suitable Lyapunov-Schmidt decomposition, a variant
of the Nash-Moser Implicit Function Theorem and Variational Methods.
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1. Completely resonant PDEs. We consider completely resonant nonlinear wave
equations like

{
utt − uxx + f(x, u) = 0

u(t, 0) = u(t, π) = 0
(1.1)

where the nonlinearity

f(x, u) = ap(x)up + O(up+1) , p ≥ 2 , (1.2)

vanishes at least quadratically at u = 0.
Equation (1.1) is an infinite dimensional Hamiltonian system possessing an elliptic

equilibrium at u = 0. Any solution

v =
∑
j≥1

aj cos(jt + θj) sin(jx)

of the linearized equation utt − uxx = 0

u(t, 0) = u(t, π) = 0
(1.3)

is 2π-periodic in time. For this reason, equation (1.1)–(1.2) is called a completely resonant
PDE.

• Question: there exist periodic solutions of the nonlinear equation (1.1)–(1.2) close
to the equilibrium solution u = 0?

For finite dimensional Hamiltonian systems, existence of periodic solutions close to
a completely resonant elliptic equilibrium has been proved by Weinstein [14], Moser [12]
and Fadell-Rabinowitz [10]. The proofs are based on the classical Lyapunov-Schmidt
decomposition which splits the problem into
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10 M. Berti

(i) the range equation, solved through the standard Implicit Function Theorem,
(ii) the bifurcation equation, solved via variational arguments.
To extend these results for completely resonant Hamiltonian PDEs like (1.1)–(1.2),

the main difficulties to be overcome are
(i) a “small divisors problem” which prevents, in general, to use the implicit function

theorem to solve the range equation,
(ii) the presence of an infinite dimensional bifurcation equation: which solutions v

of the linearized equation (1.3) can be continued to solutions of the nonlinear
equation (1.1)?

The “small divisors problem” (i) arises as follows. Since Equation (1.1) is autonomous,
the frequency ω of the periodic solution is not a-priori fixed. We introduce ω as a free
parameter looking for 2π-periodic solutions ofω2utt − uxx + f(x, u) = 0

u(t, 0) = u(t, π) = 0 .
(1.4)

The eigenvalues of the linear operator

Lω := ω2∂tt − ∂xx

in a space of functions u(t, x), 2π-periodic in time and valued in H1
0 (0, π) (because of

Dirichlet boundary conditions) are

σ(Lω) ≡
{
− ω2l2 + j2 , l ∈ Z , j ≥ 1

}
. (1.5)

Therefore, for almost every ω ∈ R, the eigenvalues of Lω accumulate to 0, implying
that the inverse operator of Lω is unbounded. For this reason the standard Implicit
Function Theorem is, in general, not applicable.

The first existence result of small amplitude periodic solutions of (1.1)–(1.2) has
been obtained in [3] for f = u3 + O(u5), imposing on the frequency ω the “strongly
non-resonance” condition |ωl− j| ≥ γ/l,∀l 6= j, l ≥ 0, which is satisfied in a zero measure
set accumulating at ω = 1 . For such ω the spectrum of Lω does not accumulate to 0
because |−ω2l2+j2| = |ωl−j||ωl+j| ≥ γω, and so the small divisor problem (i) does not
appear. Next, the bifurcation equation (problem (ii)) is solved proving that the 0th-order
bifurcation equation possesses non-degenerate periodic solutions.

In [4]–[5], for the same set of strongly non-resonant frequencies, existence and mul-
tiplicity of periodic solutions has been proved for any nonlinearity f(u). The novelty of
[4]–[5] was to solve the infinite dimensional bifurcation equation via a variational principle
at fixed frequency (in the spirit of Fadell-Rabinowitz [10]) which, jointly with min-max
arguments, enables to find solutions of (1.1) as critical points of the Lagrangian action
functional (mountain pass critical points of a “reduced” action functional).

We now want concentrate on the small divisors problem (i) in order to find peri-
odic solutions of (1.1) for positive measure (actually asymptotically full measure) sets of
frequencies close to ω = 1, presenting the recent results of [6]–[7].

Previous results in this direction have been obtained in [8] (for periodic spatial bound-
ary conditions) and in [11] with the Lindsted series method, for f = u3 + h.o.t.. Again
the dominant term u3 garantees a non-degeneracy property for the solutions of the 0th
order bifurcation equation.
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2. Existence of periodic solutions for asympotically full measure sets of
frequencies. Instead of looking for solutions of (1.4) in a shrinking neighborhood of
u = 0, let perform the rescaling

u → δu , δ > 0 ,

obtaining ω2utt − uxx + εg(δ, x, u) = 0

u(t, 0) = u(t, π) = 0
(2.1)

where

ε := δp−1 and g(δ, x, u) :=
f(x, δu)

δp
= ap(x)up + δap+1(x)up+1 + . . . .

We look for solutions of (2.1) in the Hilbert algebra (σ > 0, s > 1/2)

Xσ,s :=
{

u =
∑
l≥0

cos(lt) ul(x)
∣∣∣ ul ∈ H1

0 (0, π),

‖u‖2
σ,s :=

∑
l≥0

e2σ|l|(l2s + 1)‖ul‖2
H1 < +∞

}
of 2π-periodic, even, σ-analytic in time functions valued in H1

0 (0, π) (we can look for
even solutions because equation (1.1) is reversible).

The solutions of the linear equation (1.3) that belong to H1
0 (T × (0, π),R) and are

even in time form the infinite dimensional linear space

V :=
{

v(t, x) =
∑
l≥1

cos(lt)ul sin(lx) |
∑
l≥1

l2|ul|2 < +∞
}

.

We endow V with the H1-topology in view of the variational arguments used for the
bifurcation equation.

Let implement the Lyapunov-Schmidt reduction according to the orthogonal decom-
position

Xσ,s = (V ∩Xσ,s)⊕ (W ∩Xσ,s)

where

W :=
{

w =
∑
l≥0

cos(lt) wl(x) ∈ X0,s such that
∫ π

0

wl(x) sin(lx) = 0
}

.

Projecting Equation (1.1), setting u = v+w, v ∈ V , w ∈ W , and imposing the “frequency-
amplitude” relation

ω2 − 1
2

= s∗ε

with s∗ = ±1 to be chosen later (see (2.5)), yields{ −∆v = s∗ΠV g(δ, x, v + w) bifurcation equation

Lωw + εΠW g(δ, x, v + w) = 0 range equation
(2.2)

where ∆v := vxx + vtt and ΠV , ΠW denote the projectors respectively on V and W .
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2.1. The finite dimensional reduction. Since V is infinite dimensional a serious
difficulty arises in the application of the method of [9]: if v ∈ V ∩Xσ,s then the solution
w(δ, v) of the range equation, obtained with any Nash-Moser iteration scheme will have a
lower regularity, e.g. w(δ, v) ∈ Xσ/2,s. Therefore, in solving next the bifurcation equation
substituting w = w(δ, v), the best estimate we can obtain is v ∈ V ∩Xσ/2,s+2 which makes
the scheme incoherent. In [9] this problem does not arise since, dealing with nonresonant
or partially resonant Hamiltonian PDEs like utt−uxx +a1(x)u = f(x, u), the bifurcation
equation is finite dimensional.

Moreover we have to ensure that the 0th-order bifurcation equation1 (obtained setting
δ = 0 in the bifurcation equation)

−∆v = s∗ΠV

(
ap(x)vp

)
(2.3)

has solutions v ∈ V which are analytic, a necessary property to initiate an analytic
Nash-Moser scheme.

We overcome both these difficulties thanks to a reduction to a finite dimensional
bifurcation equation on a subspace of V of dimension N independent of ω. This reduction
can be implemented, in spite of the complete resonance of equation (1.1)–(1.2), thanks
to the compactness of the operator (−∆)−1. Let decompose

V = V1 ⊕ V2

where V1 :=
{

v ∈ V | v(t, x) =
∑N

l=1 cos(lt)ul sin(lx)
}

, “low Fourier modes”,

V2 :=
{

v ∈ V | v(t, x) =
∑

l>N cos(lt)ul sin(lx)
}

, “high Fourier modes”.

Setting v := v1 + v2, v1 ∈ V1, v2 ∈ V2, system (2.2) is equivalent to
−∆v1 = s∗ΠV1g(δ, x, v1 + v2 + w) (Q1)

−∆v2 = s∗ΠV2g(δ, x, v1 + v2 + w) (Q2)

Lωw + εΠW g(δ, x, v1 + v2 + w) = 0 range equation

(2.4)

where ΠVi
: Xσ,s → Vi (i = 1, 2) denote the projectors on Vi.

Our strategy to find solutions of system (2.4) is the following.
Step 1: Solution of the (Q2)-equation. The solution v2(δ, v1, w) of the (Q2)-equation is
found as a fixed point of v2 = s∗(−∆)−1ΠV2g(δ, x, v1 +v2 +w) by a Contraction mapping
argument. We obtain, if w ∈ W∩Xσ,s, a solution v2 = v2(δ, v1, w) ∈ V2∩Xσ,s+2, provided
N is large enough and 0 < σ ≤ σ is small enough, depending only on the nonlinearity
f . To clarify this point note that equation (2.3) is the Euler Lagrange equation of the
functional Φ0 : V → R

Φ0(v) :=
‖v‖2

H1

2
− s∗

∫
Ω

ap(x)
vp+1

p + 1
, Ω := T× (0, π)

1We assume for simplicity that ΠV (ap(x)vp) 6≡ 0 or, equivalently,
∫
Ω ap(x)vp+1 6≡ 0, which is verified

for p odd, iff a(x) is not antisymmetric w.r.t. to x = π/2, and for p even, iff a(x) is not symmetric w.r.t.
to x = π/2. If not verified – like for f = u2, u4 – the 0th-order non-trivial bifurcation equation will
involve the higher order terms of the nonlinearity.
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where ‖v‖2
H1 =

∫
Ω

v2
t + v2

x. Choose

s∗ =


1 if ∃ṽ ∈ V such that

∫
Ω

ap(x)ṽp+1 > 0

−1 if ∃ṽ ∈ V such that
∫

Ω

ap(x)ṽp+1 < 0
(2.5)

and let t̃ > 0 be large enough such that Φ0(t̃ṽ) < 0. The mountain pass value

c := inf
{

max
t∈[0,1]

Φ0(γ(t)) | γ ∈ C([0, 1], V ) , γ(0) = 0 , γ(1) = t̃ṽ
}

(c > 0) is a critical level2 with a non-trivial critical set

Kc :=
{

v ∈ V | Φ0(v) = c , Φ′0(v) = 0
}

which is compact for the H1-topology [4], in particularly Kc is bounded ‖v‖H1 ≤ R,
∀v ∈ Kc. N must be chosen large enough depending only on Kc: euristically, to find
solutions of the complete bifurcation equation close to the solutions Kc of the 0th order
bifurcation equation (2.3), N must be taken large enough so that the majority of the
H1-“mass” of the solutions of Kc is “concentrated” on the first N Fourier modes.

Step 2: Solution of the range equation. We solve next the range equation

Lωw + εΠW Γ(δ, v1, w) = 0 (2.6)

where

Γ(δ, v1, w) := g(δ, x, v1 + w + v2(δ, v1, w))

by means of a Nash-Moser Implicit Function Theorem for (δ, v1) belonging to some
Cantor-like set of parameters.

Theorem 2.1 ([6]). For ‖v1‖H1 ≤ 2R and δ small enough, there is a C∞ function
w̃(δ, v1) ∈ W ∩Xσ/2,s and the “large” Cantor-like set

B∞ :=
{

(δ, v1) |
∣∣∣ωl− j− s∗ε

M(δ, v1, w̃(δ, v1))
2j

∣∣∣ ≥ γ

lτ
,

∣∣∣ωl− j
∣∣∣ ≥ γ

lτ
, ∀l 6= j , l, j ≥ 1

3ε

}
where M(δ, v1, w) := (1/|Ω|)

∫
Ω
(∂ug)(δ, x, u), such that, ∀(δ, v1) ∈ B∞, w̃(δ, v1) solves the

range equation (2.6).

To understand how such Cantor set B∞ arises, we recall that the core of any Nash-
Moser convergence method (based on a Newton’s iteration scheme) is the proof of the
invertibility of the linearized operators

L(δ, v1, w)[h] := Lωh + εΠW DwΓ(δ, v1, w)[h]

where w is the approximate solution obtained at a given stage of the Nash-Moser iteration.
The eigenvalues {λlj(δ, v1), l ≥ 0, j ≥ 1} of L(δ, v1, w) are, in general, dense on R (as the
spectrum of the unperturbed operator Lω in (1.5)) and depend in a very sensitive way on
the parameters (δ, v1). We estimate perturbatively λlj(δ, v1) and, imposing restrictions

2Actually Φ0 has an unbounded sequence of critical levels tending to plus infinity [1].
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on (δ, v1) like |λlj(δ, v1)| ≥ |l|−(τ−1), we obtain the invertibility of L(δ, v1, w) with a
controlled loss of analiticity to obtain the convergence of the iterative scheme.

Our approach is different than in [9] and works also for not odd nonlinearities f with
low spatial regularity, unlike [9] works only for nonlinearities which are odd and analytic
in (x, u).

Note that the difficulty mentioned at the beginning of the subsection is overcome
because, since v2(δ, v1, w) has always the same regularity of w ∈ Xσ,s (actually 2 deriva-
tives more because of the regularizing effect of (−∆)−1), during the Nash-Moser iteration
v2(δ, v1, wn) will “adjust” its regularity as the iterates of wn (which decrease its analityc-
ity).
Step 3: solution of the (Q1)-equation. Finally remains the finite dimensional bifurcation
equation

−∆v1 = ΠV1G(δ, v1) (2.7)

where G(δ, v1) := g(δ, x, v1 + w̃(δ, v1) + v2(δ, v1, w̃(δ, v1))).
We have to ensure that for a positive measure set of δ there are solutions v1(δ) of

(2.7) with (δ, v1(δ)) belonging to the Cantor set B∞ where also the range equation was
solved. Although B∞ is – in a measure theoretic sense – a “large” set this property is
not obvious because there are “gaps” in B∞.

The first way to proceed is to assume a classical non-degeneracy condition (analogue
to the KAM-Arnold condition) stating the existence of a non-degenerate solution v of
(2.3), i.e. KerD2Φ0(v) = {0}. In this case, by the implicit function theorem, there
is a C∞-curve (δ → v1(δ)) of solutions of (2.7) (with v1(0) = ΠV1v) which intersects
transversally, and so in a asympotically full measure set, the Cantor set B∞. This non-
degeneracy condition can be verified for several nonlinearities [6]–[2].

Theorem 2.2. ([6]) Assume that3

f(x, u) =


a2u

2 +
∑

k≥4 ak(x)uk , a2 6= 0

a3(x)u3 +
∑

k≥4 ak(x)uk , 〈a3〉 := π−1
∫ π

0
a3(x) 6= 0

a4u
4 +

∑
k≥8 ak(x)uk , a4 6= 0

where ak(x) ∈ H1(0, π) satisfy
∑

k ‖ak‖H1ρk for some ρ > 0.
Then, s > 1/2 being given, there exist δ0 > 0, σ > 0 and a C∞-curve [0, δ0) 3 δ →

u(δ) ∈ Xσ/2,s with the following properties:

• (i)
∥∥∥u(δ)− δv

∥∥∥
σ/2,s

= O(δ2) for some v ∈ V ∩Xσ,s, v 6= 0;

• (ii) There exists a Cantor set C ⊂ [0, δ0) of asymptotically full measure, i.e.
satisfying

lim
η→0+

meas(C ∩ (0, η))
η

= 1 (2.8)

such that, for all δ ∈ C, u(δ)(ω(δ)t, x) is a 2π/ω(δ)-periodic solution of (1.1)
with

ω(δ) =


√

1− 2δ2√
1 + 2δ2sign〈a3〉

√
1− 2δ6.

3For some more general nonlinearities see [2].
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Corollary 2.3 (Multiplicity [6]). There exists a Cantor-like set W of asymptotically
full measure at ω = 1 such that, ∀ω ∈ W equation (1.1) possesses geometrically distinct
periodic solutions

u1, . . . , un , . . . uNω
, Nω ∈ N

with the same period 2π/ω. Their number increases arbitrarily as ω tends to 1: limω→1 Nω =
+∞.

2.2. A variational principle on a Cantor set. The previous Theorem 2.2 was
proved under the non-degeneracy of the solutions of the 0th order bifurcation equation
(2.3). We want to relax this condition finding solutions of the finite dimensional bifurca-
tion equation (2.7) through variational methods. Aside for aims of generality, it is also
a conceptually important problem for understanding how to use variational methods in
problems with small divisors.

By classical variational bifurcation theory, it is easy to define a smooth functional
Φ(δ, v1) such that any critical point v1(δ) of Φ(δ, ·) is a solution of the finite dimensional
bifurcation equation (2.7). Morevoer it is easy to prove the existence, for any δ small
enough, of a mountain pass critical point v1(δ) of Φ(δ, ·) close to ΠV1Kc. However, the
big difficulty is that – if the critical set Kc does not reduce to a non-degenerate solution
– v1(δ) could vary in a highly irregular way as δ → 0. The only information available
in general is that v1(δ) → Kc as δ → 0. Therefore for each δ the mountain pass critical
point v1(δ) could belong to the complementary of the Cantor set B∞ where the range
equation (2.6) was solved (actually Bc

∞ is even arcwise connected!). This is the common
difficulty in applying variational methods in a problem with small divisors.

The main point is to have a sufficiently good control on how v1(δ) varies with δ. In
[7] we establish that, if, for some M > 0, (δ → δMv1(δ)) is a BV function then (δ, v1(δ))
belongs to B∞ for δ in a set of asymptotically full measure (note that the function
δ → v1(δ) can be discontinuous and with large oscillations of order δ−M ). Next we verity
that this property holds for several nonlinearities.

The information of how the critical points of a family of parameter dependent func-
tionals varies with the parameters is in general very hard to obtain. On the contrary,
the critical values behave in general rather smoothly on the parameters. We want to find
BV-path of critical points by informations on critical levels (this is somehow related to
the Struwe monotonicity method [13]). We are not able to ensure the BV-property for
any f = ap(x)up + O(up), but rather for parameter depending nonlinearities

f(x, u, λ) = ap(x)up +
M∑
i=1

λibi(x)uqi + r(x, u) , qi > p (2.9)

where r(x, u) :=
∑

k>p ak(x)uk satisfy
∑

k>p ‖ak‖H1ρk for some ρ > 0.

Theorem 2.4 ([7]). For any q > p there exist q ≤ q1 ≤ . . . ≤ qM and b1(x), . . . ,
bM (x) ∈ H1(0, π) such that, for any r(x, u), for almost every λ = (λ1, . . . , λM ), |λ| ≤ 1,
equation (1.1) with the nonlinearity f(x, u, λ) like in (2.9) possesses small amplitude
periodic solutions for an asymptotically full measure set of frequencies close to ω = 1.

We remark that, since qi > p, the nonlinearities λibi(x)uqi do not change the 0th-
order bifurcation equation (2.3), which keeps being in particular degenerate. Actually,
since we can choose the exponents qi > q arbitrarily large, we are adding arbitrarily
small corrections bi(x)uqi = o(up) for u → 0. Moreover we underline that, given ap(x)up,
bi(x)uqi , the existence result of Theorem 2.4 holds for any nonlinear term r(x, u) =
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k>p ak(x)uk, changing only the full measure set of parameters λ; in this sense Theorem

2.4 is a genericity result.
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