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SUPPORT RE-SPLITTING PHENOMENA CAUSED BY AN
INTERACTION BETWEEN DIFFUSION AND ABSORPTION∗

KENJI TOMOEDA†

Abstract. Numerical computation for an interaction between diffusion and absorption suggests
several interesting phenomena in the dynamical behavior of the support. The most remarkable properties
is the occurrence of support re-splitting phenomena for the porous media equation with strong absorption.
In this paper such phenomena are investigated by use of finite difference scheme, and justified from
numerical and analytical points of view.
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1. Introduction. Nonlinear diffusion equations have played an important role in
investigating phenomena in several fields of fluid dynamics, combustion theory, plasma
physics, and population dynamics. The interaction between diffusion and absorption is
described as one of simple mathematical models. This interaction causes support splitting
phenomena and total extinction in finite time, which mean that the region occupied by
the fluid becomes disconnected and the fluid vanishes in finite time. The most remarkable
property is the occurrence of

Support re-splitting phenomena. After support splitting phenomena appear, the sup-
port becomes connected, and thereafter support splitting phenomena appear again
(see Fig. 1.1).

From only numerical computation it is difficult to justify whether such phenomena are
true or not, because the space mesh and the time step are sufficiently small but not zero.
So the mathematical analysis is needed.

We shall try to investigate such phenomena in the Cauchy problem for the follow-
ing one-dimensional homogeneous porous media equation with the interaction between
diffusion and absorption:

vt = (vm)xx − cvp, x ∈ R1, t > 0, (1.1)

v(0, x) = v0(x), x ∈ R1, (1.2)

where m(> 1), p(> 0), and c(≥ 0) are constants, v denotes the density in the flow of
the liquids through an absorbing medium, and v0(x) ∈ C0(R1) is nonnegative and has
compact support.

The existence and uniqueness of a weak solution and the finite propagation of the
support of v are proved by Aronson [1], Oleinik, Kalashnikov and Chzou Yui-Lin [11],
Kalashnikov [6, 7], and Herrero and Vázquez [5]. Moreover, v(t, x) is smooth in the open
set P(v) = {(t, x)|v(t, x) > 0 and t > 0}, and the behavior of the support is classified
into two cases:
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Case 1. For c = 0, or c > 0 and p ≥ 1 the diffusion is active and supp v(t, ·) monotonously
expands as t increases; that is,

lim
t→∞

supp v(t, ·) = R1 for c = 0, or c > 0 and p ≥ m

and

lim
t→∞

supp v(t, ·) ⊂ [M1,M2] for c > 0 and m > p ≥ 1,

where Mi(i = 1, 2) are some constants;

Case 2. For c > 0 and 0 < p < 1 the absorption is active and the solution vanishes
identically at some finite time T ∗ > 0; that is, supp v(·, ·) becomes compact.
Such an absorption is called a strong absorption.

In Case 1 support splitting phenomena never appear. In Case 2 there is a possibility of
the support to split, when v0(x) has two local maxima. Rosenau and Kamin [12] suggested
this possibility by numerical computation. Chen, Matano and Mimura [3] constructed
the initial function for which the support of the solution splits into multiple connected
components in a finite time. This motivates us to investigate the detail of the behavior
of the support.

Fig. 1.1. Support re-splitting phenomena. The graph on the right hand side shows the numerical
interfaces for vt = (vm)xx − cvp (m = 1.5, p = 0.5 and c = 5).

In this paper we shall justify support re-splitting phenomena under the following

Assumption A. c > 0, m+ p = 2 and 0 < p < 1.

For this end we have to show support splitting phenomena in the sense of the ap-
pearance of the interval on which v = 0 and support connecting phenomena. The latter
is proved by taking account of the interface equation[9]. It is obvious that the former
follows from the following

Conjecture. A spontaneous appearance of zeros of the solution implies support splitting
phenomena in such a sense.

However, we are unable to prove this conjecture. To avoid the such difficulties we assume
that v0(x) is an even function, which implies that the solution v(t, x) also becomes an even
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function. We impose some additional conditions on v0(x) for which zeros of the solution
appear at the points (t̃,±x̃), and apply the nonincrease of the number of local maximum
points to this solution [3]. Thus the solution identically vanishes on the interval [−x̃, x̃]
at t = t̃, and support splitting phenomena in the sense stated above follow. This is our
strategy, where several estimates derived from the finite difference scheme are employed.
Unfortunately, in the case where m + p 6= 2, m > 1 and 0 < p < 1, we are unable to
succeed in constructing the finite difference scheme with convergence. This is the reason
why we are concerned with the specific case stated in Assumption A.

2. Finite difference schemes. We put u = vm−1 and rewrite (1.1)–(1.2) as follows:

ut = muuxx + a(ux)2 − c′, (2.1)

u(0, x) = u0(x) ≡ (v0(x))m−1, (2.2)

where a =
m

m− 1
, c′ = (m− 1)c and the term of absorption is written as the constant −c′

by the assumption m+ p = 2. Our scheme approximates the problem (2.1)–(2.2) instead
of (1.1)–(1.2) [4]. Let h be a space mesh width and Vh be the set of the nonnegative and
piecewise-linearly interpolated functions uh = uh(x) with the mesh Mh = {`, Lh, (L +
1)h, · · · , (R − 1)h,Rh, r}, where the L and R are integers, and ` and r denote the left
and right interfaces of uh, respectively. The scheme is described as follows:

Find the sequence {un
h}n=1,2,··· ⊂ Vh with the mesh

Mn
h = {`n, Lnh, (Ln + 1)h, · · · , (Rn − 1)h,Rnh, rn}

for each u0
h ∈ Vh such that

un+1
h = Sh,ku

n
h for n = 0, 1, 2, · · · , (2.3)

where u0
h(x) = u0(x) on M0

h. Since Sh,k is somewhat complicated form, we omit its de-
scription [8, 9, 10]. The variable time step k = kn+1 ≡ tn+1− tn (t0 = 0) is determined by

k =
1
c′

max(uL, uL+1) for the approximation to the left interface, or (2.4)

k =
1
c′

max(uR, uR−1) for the approximation to the right interface. (2.5)

When Sh,ku
n∗

h ≡ 0 holds for some integer n∗ > 0, we put the numerical extinction time
T ∗h = tn∗+1 ≡ tn∗ + kn∗+1, and stop the numerical computation. We define the left (resp.
right) numerical interface curves `h(t)(resp. rh(t)) by piecewise-linearly interpolating
(tn, `n)(resp.(tn, rn))(0 ≤ n ≤ n∗). We state several results without proof, which play an
important role in constructing the initial function for which support re-splitting phenom-
ena appear. For this end we introduce the following

Condition B.
i) v0(x) ∈ C0(R1) is a nonnegative function with compact support and(

(v0(x))m−1
)
x
∈ L∞(R1) ∩BV (R1);

ii)
(
(v0(x))m−1

)
x

is absolutely continuous on I = {x|v0(x) > 0} and
ess.infI

(
(v0(x))m−1

)
xx

is finite.

We define the constants Cj(v0) (j = 0, 1, 2) by{
C0(v0) = ‖(v0)m−1‖∞, C1(v0) =

∥∥(
(v0)m−1

)
x

∥∥
∞ ,

C2(v0) = −ess.infI
(
(v0(x))m−1

)
xx
,

(2.6)
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where ‖ · ‖∞ denotes ‖ · ‖L∞(R1).
Theorem 2.1 (Basic estimates [8], [10]). Let u0

h ∈ Vh. Then un
h either becomes extinct

or belongs to Vh for each n ≥ 0, and the following estimates hold for all n ≥ 0:

T ∗h ≤ tn +
‖un

h‖∞
c′

, (2.7)

0 ≤ rn − `n ≤ (r0 − `0 + 2a‖(u0
h)x‖∞tn) if un

h 6≡ 0, (2.8)

0 ≤ un
h(x) ≤ max(‖u0

h‖∞ − c′tn, 0) on R1, (2.9)

‖(un
h)x‖∞ ≤ ‖(u0

h)x‖∞, (2.10)

TV ((un
h)x) ≤ TV ((u0

h)x), (2.11)

‖(un+1
h − un

h)/kn+1‖L1(R1) ≤ (m+ a)‖u0
h‖∞TV ((u0

h)x)

+c′(r0 − `0 + 2a‖(u0
h)x‖∞tn), (2.12)

inf
i∈Z

δ2u0
i ≤ inf

i∈Z
δ2un

i , (2.13)

where δ2u denotes a usual finite difference approximation to uxx.

Theorem 2.2 (Convergence of numerical solutions [10]). Under Condition B let {h}
be an arbitrary sequence which tends to zero. Then, there exists the unique weak solution
v of (1.1)–(1.2), and

‖vh − v‖L∞(H) −→ 0 and |T ∗h − T ∗| −→ 0 as h→ 0, (2.14)

where H = [0,∞) × R1, vh = (uh)1/(m−1), uh(t, x) = un
h(x) on [tn, tn+1) × R1 for all

tn and h, and T ∗ is the extinction time.

Then, from Theorems 2.1 and 2.2 and the fact that v(t, x) is smooth on P(v) we
have

Lemma 2.3 (Basic estimates). Assume Condition B. Then

0 ≤ u(t, ·) ≤ max(‖u0‖∞ − c′t, 0) on R1, (2.15)

‖ux(t, ·)‖∞ ≤ ‖u0
x‖∞, (2.16)∫ b2

b1

|uxx(t, x)|dx = TV (ux(t, ·)) ≤ TV ((u0)x) (2.17)

for all t and intervals [b1, b2] ⊂ P(u),
ess.infI u

0
xx ≤ uxx(t, x) for (t, x) ∈ P(u). (2.18)

Theorem 2.4 (Convergence of numerical interface curves [9]). Under Condition B let
there exist a positive constant M such that

((v0)m−1)x(`0 + 0), −((v0)m−1)x(r0 − 0) > M. (2.19)

Let M ′(< M) be an arbitrary positive number. Then,

(vm−1)x(t, `(t) + 0), −(vm−1)x(t, r(t)− 0) > M ′ on [0, T (M ′, v0)), (2.20)
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and `h(t) (resp. rh(t)) converges uniformly to the exact left (resp. right) interface curve
`(t) (resp. r(t)) on [0, T ] as h tends to zero for each fixed T < T (M ′, v0), where

T (M ′, v0) =
(M −M ′)M ′

(2a+m)C1(v0)C2(v0)M ′ + 3c′C2(v0)
. (2.21)

Moreover, the following interface equations

˙̀(t) = −a(vm−1)x(t, `(t) + 0) +
c′

(vm−1)x(t, `(t) + 0)
, (2.22)

ṙ(t) = −a(vm−1)x(t, r(t)− 0) +
c′

(vm−1)x(t, r(t)− 0)
(2.23)

hold for a.e. t ∈ [0, T (M ′, v0)).

Theorem 2.5 (Support splitting phenomena [10]). Assume Condition B. For α1 <
β1 < γ1 < γ2 < β2 < α2 let v0(x) satisfy

v0(x) > 0 on (α1, α2), [α1, α2] = supp v0(x), (2.24)

(v0(βj))m−1

c′ +mC0C2
>

εm−1

c′
(j = 1, 2) and v0(x) = ε on [γ1, γ2], (2.25)

where Cj = Cj(v0) (j = 0, 2) are given by (2.6). Then, for sufficiently large σ ≡ γ2−γ1,
there exist t̃ > 0 and x̃ ∈ [γ1, γ2] such that v(t̃, x̃) = 0 and v(t̃, βj) > 0 (j = 1, 2) hold.

3. Support re-splitting phenomena. First, we introduce two nonnegative func-
tions φ(x; ε) and ψ(x; ε, d1, d2) for arbitrary positive numbers ε, d1 and d2, which satisfy
the following

Condition C.
i) φ(x; ε) satisfies Conditions B with v0(x) = φ(x; ε) and supp φ = [0, α ];

ii) φ(x; ε) takes the unique local maximum at x = β, and

φ(x; ε) = ε on [ξ, γ ], (3.1)

where 0 < ξ < γ < β < α;
iii)

ψ(x; ε, d1, d2) =


0 if −∞ < x < d1,

φ(x− d1; ε) if d1 < x < ξ + d1,

ε if ξ + d1 < x < γ + d1 + d2,

φ(x− d1 − d2; ε) if γ + d1 + d2 < x.

(3.2)

Putting

v0(x; ε, d1, d2) = ψ(x; ε, d1, d2) + ψ(−x; ε, d1, d2) on R1, (3.3)

we choose ε, d1 and d2 so that support connecting and splitting phenomena appear for
the initial function v0(x; ε, d1, d2).

Next, for v0(x; ε, d1, d2) we introduce the initial function v0
ρ(x; ε, d1, d2) (0 < ρ < ε)

satisfying
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Condition D.
i) v0

ρ(x; ε, d1, d2) = v0
ρ(−x; ε, d1, d2) and v0(x; ε, d1, d2) ≤ v0

ρ(x; ε, d1, d2) hold on R1;

ii)

v0
ρ(x; ε, d1, d2) =

{
v0(x; ε, d1, d2) if x ≤ −d1 − η, or d1 + η ≤ x

ρ if − d1 ≤ x ≤ d1,
(3.4)

where 0 < η < ξ, and v0
ρ(x; ε, d1, d2) decreases on [−d1− η,−d1] and increases on

[d1, d1 + η];

iii) v0
ρ′(x; ε, d1, d2) ≤ v0

ρ(x; ε, d1, d2) holds for ρ′ ≤ ρ;

iv) v0
ρ satisfies Condition B with v0(x) = v0

ρ(x; ε, d1, d2) and
‖u0

ρx(·; ε, d1, d2)‖∞ ≤ ‖u0
x(·; ε, d1, d2)‖∞,

TV (u0
ρx(·; ε, d1, d2)) ≤

(
TV (u0

x(·; ε, d1, d2)
)
),

ess.inf u0
ρxx(·; ε, d1, d2) ≥ ess.inf u0

xx(·; ε, d1, d2),

(3.5)

where u0(x; ε, d1, d2)=(v0(x; ε, d1, d2))m−1 and u0
ρ(x; ε, d1, d2)=(v0

ρ(x; ε, d1, d2))m−1

(see Fig. 3.1).

Fig. 3.1. Initial function v0
ρ(x; ε, d1, d2).

Taking the constant ρ sufficiently small, we can show that support splitting, connect-
ing, and re-splitting phenomena appear in the behavior of supp vρ(t, x; ε, d1, d2), where
vρ(t, x; ε, d1, d2) is the solution of (1.1) with v(0, x) = v0

ρ(x; ε, d1, d2). We state our results.

Theorem 3.1 (Support connecting and splitting phenomena [13]). Let φ(x; ε) satisfy
Condition C and the following inequalities:

lim
x→+0

(
(φ(x; ε))m−1

)
x
>

√
c′

a
, (3.6)

and
(φ(β; ε))m−1

c′ +mC0(φ)C2(φ)
>

εm−1

c′
, (3.7)

where Cj(φ) (j = 0, 2) are given by (2.6) with v0 = φ. Then, for sufficiently small d1 and
sufficiently large d2 there exist constants T1, T2 (T2 > T1 > 0) and x̃ ∈ [ξ+d1, γ+d1+d2]
such that supp v(T1, · ; ε, d1, d2) is connected and{

v(T2, x; ε, d1, d2) = 0 on [−x̃, x̃] and

v(t, (−1)jβ+(−1)j(d1+d2); ε, d1, d2) > 0 for t ≤ T2 (j=1,2),
(3.8)

where v(t, x; ε, d1, d2) is the solution of (1.1) with v(0, x) = v0(x; ε, d1, d2) given by (3.3).
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Proof. The support connecting property follows from Theorem 2.4, and the support
splitting property is obtained by applying Theorem 2.5 to v0(x; ε, d1, d2) with γ1 = ξ+d1

and γ2 = γ+ d1 + d2. Thus the proof immediately follows. See the details in the proof of
[13, Theorem 3.2] by the author.

Theorem 3.2 (Support re-splitting phenomena). Let the initial function v0(x; ε, d1, d2)
and the constant T1 satisfy the conclusion of Theorem 3.1. Assume that v0

ρ(x; ε, d1, d2)
satisfies Condition D. Then for sufficiently small ρ > 0, there exist constants T0, T2

(T2 > T1 > T0 > 0), x̂ and x̃ such that supp vρ(T1, · ; ε, d1, d2) is connected and{
vρ(T0, x; ε, d1, d2) = 0 on [−x̂, x̂] and

vρ(T0, (−1)jβ+(−1)j(d1+d2); ε, d1, d2) > 0 (j=1,2),
(3.9)

{
vρ(T2, x; ε, d1, d2) = 0 on [−x̃, x̃] and

vρ(T2, (−1)jβ+(−1)j(d1+d2); ε, d1, d2) > 0 (j=1,2).
(3.10)

Thus the appearance of support re-splitting phenomena follows from this theorem.

Proof. [of Theorem 3.2.] In the following, the constants ε, d1 and d2 given by Theo-
rem 3.1 are fixed. For simplicity we put

vρ(t, x) = vρ(t, x; ε, d1, d2) and uρ(t, x) = uρ(t, x; ε, d1, d2) ≡ (vρ(t, x; ε, d1, d2))m−1.

We note that vρ(t,±(d1 + d2 + β)) > 0 for t < T1 and ρ > 0. Putting S = [0, T1]×
[d0, d1] for an arbitrary fixed positive constant d0 < d1, we show that S contains at least
one point (t̃, x̂) such that vρ̃(t̃, x̂) = 0 for some positive constant ρ̃. For this end we assume
the contrary; that is, suppose vρ(t, x) > 0 on S for ρ > 0. By Lemma 2.3, Condition D
and (2.1) we obtain∫ d1

d0

uρ(t, x) dx =
∫ d1

d0

uρ(0, x) dx (3.11)

+
∫ t

0

∫ d1

d0

{
muρ(t, x)uρxx(t, x) + a(uρx(t, x))2 − c′

}
dxdt

= (d1 − d0)ρm−1

−
∫ t

0

{
(d1 − d0)c′ − (m− 2)a

∫ d1

d0

uρ(t, x)uρxx(t, x) dx− a
[
uρ(t, x)uρx(t, x)

]d1

d0

}
dt

≤ (d1 − d0)ρm−1

−
{

(d1 − d0)c′ − a max
[0,t]×[d0,d1]

uρ(t, x)
(
(2−m)TV (u0

ρx) + 2‖u0
ρx‖∞

)}
t

for t ∈ [0, T1].

Let ρ1 be an arbitrary fixed positive constant such that

ρ1
m−1 <

(d1 − d0)c′

a
(
(2−m)TV (u0

x) + 2‖u0
x‖∞

) . (3.12)
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Then, by the continuity of the solution vρ(t, x) and the comparison theorem [2] on the
initial data there exist positive constants ρ2 and T̃1 < T1 such that

max
[0,t]×[d0,d1]

uρ(t, x) < ρ1
m−1 (3.13)

for t < T̃1 and ρ < ρ2 < min (ρ1, ψ(d1 + η, ε, d1, d2)) .

We put

T (ρ) =
(d1 − d0)ρm−1

(d1 − d0)c′ − aρ1
m−1

(
(2−m)TV (u0

x) + 2‖u0
x‖∞

) , (3.14)

and choose ρ̃ < ρ2 such that T (ρ̃) < T̃1. Hence, it follows from (3.11) and Condition D
that ∫ d1

d0

uρ̃(t, x) dx < 0 for t ∈ (T (ρ̃), T̃1], (3.15)

which is a contradiction. Thus, vρ̃(T0, x̂) = 0 holds for some (T0, x̂) ∈ S. Since the
solution is an even function and the number of the local maximum points is nonincreasing,
it follows that vρ̃(T0, x; ε, d1, d2) = 0 holds on [−x̂, x̂]. It is clear by Theorem 3.1 and
the comparison theorem that supp vρ̃(T1, ·) becomes connected. Thus (3.9) follows.

Taking the proof of Theorem 3.2 [13] and the inequality uρ̃(0, x) = u0
ρ̃(x) < εm−1

(x ∈ [−d1, d1]) into consideration, we find that (3.10) follows, and the proof is complete.

Acknowledgment. This work was supported by Japan Society for the Promotion
of Science through Grant-in-Aid (No. 16340029) for Scientific Research (B).

REFERENCES

[1] D. G. Aronson, The porous medium equation, In some Problems in Nonlinear Diffusion (eds. A.
Fasano and M. Primicerio), Lecture Notes in Mathematics, 1224, Springer-Verlag, 1986.

[2] M. Bertsch, A class of degenerate diffusion equations with a singular nonlinear term, Non-linear
Anal., 7 (1983), 117-127.

[3] X.-Y. Chen, H. Matano and M. Mimura, Finite-point extinction and continuity of interfaces in a
nonlinear diffusion equation with strong absorption, J. reine angew. Math., 459 (1995), 1–36.

[4] J. L. Graveleau and P. Jamet, A finite difference approach to some degenerate nonlinear parabolic
equations, SIAM J. Appl. Math., 20 (1971), 199–223.

[5] M. A. Herrero and Vázquez, The one-dimensional nonlinear heat equation with absorption: Reg-
ularity of solutions and interfaces, SIAM J. Math. Anal., 18 (1987), 149–167.

[6] A. S. Kalashnikov, The propagation of disturbances in problems of non-linear heat conduction with
absorption, Zh. Vychisl. Mat. i Mat. Fiz., 14 (1974), 891–905.

[7] A. S. Kalashnikov, Some problems of the qualitative theory of non-linear degenerate second-order
parabolic equations, Russian Math. Surveys, 42 (1987), 169–222.

[8] M. Mimura, T. Nakaki and K. Tomoeda, A numerical approach to interface curves for some
nonlinear diffusion equations, Japan J. Appl. Math., 1 (1984), 93–139.

[9] T. Nakaki and K. Tomoeda, A finite difference approach to the interface equation for some non-
linear diffusion equations with absorption, Proc. Japan Acad., 77, Ser. A(2001), 32–37.

[10] T. Nakaki and K. Tomoeda, A finite difference scheme for some nonlinear diffusion equations in
absorbing medium: support splitting phenomena, SIAM J. Numer. Anal., 40 (2002), 945–964.

[11] O. A. Oleinik, A. S. Kalashnikov and Chzou Yui-Lin, The Cauchy problem and boundary value
problems for equations of the type of nonstationary filtration, Izv. Acad. Nauk SSSR Ser. Mat., 22
(1958), 667–704.

[12] P. Rosenau and S. Kamin, Thermal waves in an absorbing and convecting medium, Physica, 8D
(1983), 273–283.

[13] K. Tomoeda, The behavior of impulsively initiated thermal waves in an absorbing medium, Dyn.
Contin. Discrete Impuls. Syst. Ser. B, 10 (2003), 151–164.


		webmaster@dml.cz
	2012-09-13T08:08:35+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




