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EXTREMAL EQUILIBRIA FOR PARABOLIC NON-LINEAR
REACTION-DIFFUSION EQUATIONS∗

ANIBAL RODRIGUEZ–BERNAL† AND ALEJANDRO VIDAL–LÓPEZ‡

Abstract. We prove the existence of two extremal equilibria for a wide class of parabolic reaction-
diffusion equations (RD) whose non-linear term satisfies a suitable structure condition. Moreover, these
equilibria are ordered. We also obtain some stability property for the extremal equilibria as well as
uniform bounds for the asymptotic behaviour of the solutions in terms of the extremal equilibria. In fact,
the attractor for (RD) is contained in the order interval defined by the extremal equilibria.
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1. Introduction. Let consider the following model problem
ut −∆u = f(x, u) in Ω

u(0) = u0

u = 0 on ∂Ω

(1.1)

where Ω ⊂ RN is a bounded domain. We pose the problem in X = C(Ω). We assume
that f : Ω × R → R is such that there exists a unique local solution of problem (1.1)
which we denote by u(t, x;u0). These solutions define a non-linear semigroup S(t) : u0 ∈
X → S(t)u0 = u(t, x;u0).

For problems like (1.1) the following monotonicity properties with respect to the
initial data and the nonlinear term hold:

1. Given two ordered initial data, the corresponding solutions remain ordered as
long as they exist.

2. Given two nonlinear terms, f and g, we denote by uf and ug the solutions of
problem (1.1) with right hand side f and g, respectively. If f(t, x, s) ≤ g(t, x, s) for all
t ≥ 0, s ∈ R a.e. x ∈ Ω then uf (t, x;u0) ≤ ug(t, x;u0) a.e. x ∈ Ω as long as they exist.

Our goal here is to show that for a large class of nonlinear terms, problem (1.1) has
the following remarkable dynamical property: For these problems we obtain two special
equilibria which are extremal in the sense that they are maximal and minimal in the
ordering sense. Moreover they provide uniform bounds for the asymptotic behaviour of
the solutions of (1.1). In particular, they give a bound for the global attractor of (1.1),
and in fact they act as the caps of the attractor.

The outline of this note is as follows. In Section 2 we state a general results for the
existence of the extremal equilibria and some associated dynamical properties. In Section
3 we make our result precise for the case of positive solutions. In particular, we prove a
uniqueness result for positive equilibria in Section 4. Finally, we apply the general results
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to logistic equations, in Section 5. Some other examples are presented in Sections 6 and
7 including the case of nonlinear boundary conditions.

2. A general result for extremal equilibria. We start with some general resuts
on the existence of extremal equilibria, see [9, 10] for details. The main assumption we
make is that f satisfies the following structure condition

s f(x, s) ≤ C(x)s2 +D(x)|s| ∀s ∈ R (2.1)

with

C ∈ Lp(Ω), p > N/2, D ∈ Lr(Ω), r > N/2.

These conditions imply, in particular, that solutions of problem (1.1) are globally defined
since, in such case, using comparison we have

|u(t, x;u0)| ≤ v(t, x; |u0|) (2.2)

where v solves the following linear problem
vt −∆v = C(x)v +D(x) in Ω

v(0) = u0

v = 0 on ∂Ω.

(2.3)

We will also assume in what follows that the associted semigroup to the linear equa-
tion above satisfies

S∆+C(t) has exponential decay (2.4)

that is, 0 is globally asymptotically exponentially stable for{
wt −∆w = C(x)w in Ω

w = 0 on ∂Ω

This assumption and the regularity of D implies the existence of a unique equilibrium for
(2.3) which belongs to L∞(Ω) and is globally asymptotically stable for (2.3).

With these, we have

Theorem 2.1. Assume (2.1) and (2.4). Then, there exist two extremal equilibria of
(1.1), ϕm ≤ ϕM , which are minimal and maximal respectively, such that any other equi-
librium ψ satisfies

ϕm ≤ ψ ≤ ϕM

and

ϕm(x) ≤ lim inf
t→∞

u(t, x;u0) ≤ lim sup
t→∞

u(t, x;u0) ≤ ϕM (x)

uniformly in x ∈ Ω and u0 in bounded sets of X.
Moreover, ϕm is stable from below and ϕM from above. Also, there exists an attractor

for the problem satisfying

A ⊂ [ϕm, ϕM ], ϕm, ϕM ∈ A
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and the order interval [ϕm, ϕM ] is positively invariant.

We now give an sketch of the proof. First, notice that we can compare solutions of
(1.1) with those of (2.3), i.e. (2.2) holds. Now, taking limits in this inequality as t→∞,
we have the following estimate

lim sup
t→∞

|u(t, x;u0)| ≤ φ(x) uniformly in x (2.5)

where φ is the unique equilibrium of (2.3). Notice that φ is a supersolution of (1.1). We
take η = φ+δ for some positive constant δ > 0. Taking η as initial data in (1.1) and using
(2.5) we have that there exists T > 0 such that S(T )η ≤ η. Now, using monotonicity, we
can construct a decreasing sequence {S(nT )η}n which is bounded from below (by −η).
Thus, it converges to some function ϕM (x). Actually, it can be shown that S(t)η → ϕM

uniformly in Ω (by compactness properties of (1.1)). Using the continuity of S(t), t > 0,
we have that ϕM is an equilibrium. From (2.5) we have

lim sup
t→∞

u(t, x;u0) ≤ ϕM (x) uniformly in x. (2.6)

The result for the minimal equilibrium follows in an analogous way.
Notice that the extremal equilibira constructed above might be sign-changing.

3. Positive solutions. Sometimes, in applications it is interesting to consider only
non-negative solutions. We have a first result

Theorem 3.1. Consider problem (1.1). Suppose that f(x, 0) ≥ 0. Then, either there
exists a minimal non-negative equilibria ϕ+

m; or the dynamics of the system goes to
infinity, that is, ||u(t)||L∞(Ω) →∞, in finite or infinite time.

If it exists, the minimal equilibrium is either ϕ+
m ≡ 0 (if f(x, 0) = 0 a.e. x ∈ Ω), or

ϕ+
m(x) > 0 for all x ∈ Ω (if f(x0, 0) > 0 for some x0 ∈ Ω).

Moreover, if ϕm > 0 then it is globally asymptotically stable from below.

A more interesting case occurs when zero is an equilibrium and we look for the
minimal positive solutions. In that direction, we have

Theorem 3.2. Assume f(x, 0) ≡ 0 and there exists m ∈ Lp(Ω) with p > N/2 such that

f(x, s) ≥ m(x)s a.e. x ∈ Ω, 0 ≤ s ≤ s0. (3.1)

Also assume that m is such that 0 is unstable for problem{
vt −∆v = m(x)v in Ω

v = 0 on ∂Ω
(3.2)

i.e. we assume λ1(−∆−m(x)) < 0 where we denote by λ1(−∆−m(x)) the first eigenvalue
of −∆−m in Ω with Dirichlet boundary conditions.

Then, 0 is an isolated equilibrium point. Moreover, either all the dynamics goes to
infinity (in finite or infinite time), or there exists a minimal positive equilibrium ϕ+

m

which is asymptotically stable from below.

Notice that condition (3.1) is nothing but an instability condition for v = 0. Indeed,
that condition holds if f satisfies e.g.

lim inf
s→0

f(x, s)
s

> λ1 uniformly in x.
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where λ1 is the first eignvalue of the Laplacian with Dirichlet boundary conditions.
As a consequence we have

Corollary 3.3. Suppose f(x, s) satisfies the assumptions of the theorem above. Also
assume that f satisfies

f(x, s) ≤ C(x)s+D(x) (3.3)

with C ∈ Lp(Ω), p > N/2, and D ∈ Lr(Ω), r > N/2, such that the semigroup generated
by ∆ + C(x) has exponential decay.

Then, there exists two ordered extremal positive equilibria 0 < ϕ+
m ≤ ϕM (which may

coincide). Moreover, ϕ+
m is stable from below and ϕM it is so from above.

Furthermore, there exists an attractor for positive solutions A+ which satisfies

A+ ⊂ [ϕ+
m, ϕM ]

and ϕ+
m, ϕM ∈ A+.

4. A uniqueness result for positive solutions. We present now a uniqueness
result of positive equilibria for (1.1). See [4] for a related result.

Theorem 4.1. Suppose that there exists the maximal positive equilibrium solution for
(1.1). Assume in adition that, either

f(x, s)
s

is decreasing in s;

or

f(x, s)
s

is increasing in s

strictly in a set of positive measure. Then, there exists a unique positive equilibrium
of (1.1).

Proof. Let ϕ be the maximal positive solution of (1.1) and ψ ≤ ϕ any other solution.
Then,

−∆ϕ = f(x, ϕ) −∆ψ = f(x, ψ).

Multiplying the first equation by ψ, the second one by ϕ, substracting and integrating in
Ω, we have

0 =
∫

Ω

f(x, ϕ)
ϕ

ϕψ −
∫

Ω

f(x, ψ)
ψ

ϕψ =
∫

Ω

(
f(x, ϕ)
ϕ

− f(x, ψ)
ψ

)
ϕψ.

Now, since ψ ≤ ϕ using the assumption on f(x, s)/s we have that

f(x, ϕ)
ϕ

− f(x, ψ)
ψ

does not change sign and is non zero in a set of positive measure. Therefore, we must
have ψ ≡ 0.

Observe that the result above combined with Corollary 3.3 covers some cases not
included in [4]. Also, in this case the unique positive equilbrium is globally asymptotically
stable for non negative solutions of (1.1).
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5. An example: logistic equations. Our aim in this section is to apply the pre-
vious results to a model equation: a logistic autonomous equation. That is, in (1.1), we
take

f(x, s) = m(x)s− n(x)|s|ρ−1s, ρ > 1,

with

m ∈ Lp(Ω) for some p > N/2

and

n(x) ≥ 0 in Ω is a continuous function.

First, notice that

f(x, s)s = m(x)s2 − n(x)|s|ρ+1. (5.1)

Suppose that there exists a decomposition of m in the form m(x) = m1(x) + m2(x),
x ∈ Ω, with m2 ≥ 0. Then, at least formally, by Young inequality

f(x, s)s ≤ m1(x)s2 + β

[
m2(x)
n1/ρ(x)

]ρ′

|s| (5.2)

for certain postive constant β > 0. Thus, f satisfies the structure condition (2.1) with

C(x) = m1(x) and D(x) = β

[
m2(x)
n1/ρ(x)

]ρ′

. (5.3)

Hence, to apply Theorem 2.1 and Corollary 3.3 we need to choose m1 ∈ Lp(Ω),
for some p > N/2, such that the linear semigroup generated by ∆ +m1 has exponential
decay and m2 such that D(x) belongs to some Lr(Ω) with r > N/2.

In such a case note that the maximal equilibrium ϕM is non-negative and the minimal
one ϕm is non-positive since f(·, 0) ≡ 0. Moreover, if the maximal equilibrium is positive
then the uniqueness follows from Theorem 4.1 since

f(x, s)
s

= m(x)− n(x)|s|ρ−1

is decreasing, strictly on a set of positive measure, since n(x) ≥ 0 does not vanish iden-
tically. Also, note that since m ∈ Lp(Ω) then f does not satisfies the hypothesis of
Brezis–Oswald in [4]. The same comments apply for the minimal equilibrium and non-
negative solutions.

Therefore, it remain to check the appropiate conditions for C and D in (5.3). In this
direction, notice that if λ1(∆ +m) > 0 then

f(x, s)s = m(x)s2 − n(x)|s|ρ+1 ≤ m(x)s2.

Thus, we can take C = m and D = 0 and get the existence of a unique equilibrium
ϕm = ϕM = 0 which is globally asymptotically stable.

On the contrary, if λ1(∆−m) < 0 then we can apply Theorem 3.1. In this case, as
we will see below, we will distinguish the case in which n(x) > 0 in Ω or vanishes slowly
in a small region from the case in which n(x) vashines very fast or in a large set.
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Hence, for the first case, we have

Proposition 5.1. Suppose that either n(x) ≥ γ > 0 in Ω or 1/n ∈ Ls(Ω) for s > N
2(ρ−1) .

Then Theorem 2.1, Corollary 3.3 and Theorem 4.1 apply. In particular, the
unique positive equilbrium is globally asymptotically stable for non-negative solutions of
(1.1).

Proof. In this case we take m1(x) = m(x)−λ and m2(x) = λ, with λ large enough so that
the semigroup generated by ∆ +m1 has exponential decay. Then, D in (5.3) is bounded
above by

β

[
m2(x)
n1/ρ(x)

]ρ′

≤ C(β, λ)
1

n(x)ρ′/ρ
.

Thus, if n(x) ≥ γ > 0 in Ω then D ∈ L∞(Ω) while D ∈ Lr(Ω) for some r > N/2, in the
other case.

We now consider the case in which n(x) vanishes in a general subset of Ω with no
size or regularity assumptions on it. Then, we have

Proposition 5.2. Let Ω0 = {x ∈ Ω : n(x) = 0} and Ωδ a neighbourhood of Ω0 such
that n(x) ≥ δ > 0 for all x ∈ Ω \Ωδ. Suppose that the first eigenvalue of −∆−m in Ωδ,
with Dirichlet boundary conditions, λΩδ

1 (−∆−m), is positive.
Also assume that m ∈ Lp(Ω) with p > N/2 is such that there exists a decomposition

of the positive part of m of the form

m+(x) = m+
0 (x) +m+

1 (x), x ∈ Ω \ Ωδ

with 0 ≤ m+
0 ∈ Lp(Ω \ Ωδ) small enough and 0 ≤ m+

1 ∈ Ls(Ω \ Ωδ) with s > ρ′N/2.
Then Theorems 2.1, Corollary 3.3 and Theorem 4.1 apply. In particular, the

unique positive equilbrium is globally asymptotically stable for non negative solutions of
(1.1).

Proof. By (5.1), if x ∈ Ωδ then

f(x, s) ≤ m(x)s2.

We take C(x) = m(x) and D(x) = 0 if x ∈ Ωδ.
On the other hand, if x ∈ Ω \ Ωδ then, for A large enough, we write

m(x) =
(
m+

0 (x)−m−(x)−A
)

+
(
m+

1 (x) +A
)

= m1(x) +m2(x), x ∈ Ω \ Ωδ.

Then, we set C(x) = m1(x) for x ∈ Ω \ Ωδ.
Now, it can be shown that if m+

0 is small then we can choose A large enough so
that the linear semigroup generated by ∆ +C(x) with Dirichlet boundary conditions has
exponential decay.

Arguing and in (5.2) we have, for x ∈ Ω \ Ωδ,

0 ≤ D(x) = β

[
m2(x)
n1/ρ(x)

]ρ′

≤ βγ−ρ′/ρmρ′

2 (x) ∈ Lr(Ω \ Ωδ), r > N/2

where we have used that m+
1 ∈ Lp, p > N/2. Therefore, D ∈ Lr(Ω), with r > N/2.

Notice that results in this section allows to obtain some of the results in [6] with less
regularity requirements.
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6. Another model example. In this section we apply the techniques above to the
model problem 

ut −∆u = f(x, u) in Ω

u(0) = u0 > 0

u = 0 on ∂Ω = Γ

(6.1)

with

f(x, s) = a(x)sρ − b(x)s

and 0 < ρ < 1. Observe that only positive solutions are considered.
Assume a(x) = a1(x)− a2(x) with ai(x) ≥ 0. Then we have

f(x, s) ≤ a1(x)uq − b(x)u.

Hence, if a1(x) = 0 then we take C(x) = −b(x) and D(x) = 0.
On the other hand, if a1(x) > 0, proceeding as above, Young’s inequality yields for

ε(x) > 0,

f(x, s) ≤
(
ε(x)− b(x)

)
s+ β

[
a1(x)
ερ(x)

] 1
1−ρ

(6.2)

for some constant β > 0. In summary

C(x) = ε(x)X{a1>0} − b(x), D(x) = β

[
a1(x)
ερ(x)

] 1
1−ρ

X{a1>0}.

Assume then that b ∈ Lp(Ω) with p > N/2 is such that the semigroup generated
by ∆ + b(x)I with Dirichlet boundary conditions, decays exponentially, see (2.4). In
particular, from perturbation results, we know that if we chose ε(x) with a small enough
norm in Lp(Ω), then (2.4) is still satisfied for the C(x) above.

In particular, we can always take ε(x) = ε0 > 0, a sufficiently small constant and
then we must have

a1 ∈ Ls(Ω), for s >
N

2(1− ρ)

to have D ∈ Lr(Ω) for r > N
2 . In such a case, we get Theorem 2.1.

In particular, if a ∈ L∞(Ω) we can take a1 a large constant and then the above
conditions are satisfied. If a is not bounded, it is enough to assume that the positive part
satisfies

a1 = a+ ∈ Ls(Ω), for s >
N

2(1− ρ)

to have D ∈ Lr(Ω) for r > N
2 .

If moreover a(x) ≥ 0, not identically zero, we also have Theorem 4.1, since

f(x, s)
s

=
a(x)
s1−ρ

− b(x)

is decreasing in s > 0, striclty in a set of positive measure.
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7. Non-linear boundary conditions. Theorem 2.1 can be extended along the
same lines above for parabolic problems with nonlinear boundary conditions of the form

ut −∆u = f(x, u) in Ω

u(0) = u0

∂u

∂~n
= g(x, u) on ∂Ω = Γ.

(7.1)

Indeed in this (2.1) reads now

uf(x, u) ≤ −C0(x)u2 + C1(x)|u|

ug(x, u) ≤ −B0(x)u2 +B1(x)|u|
(7.2)

with C0 ∈ Lp(Ω), p > N/2, C1 ∈ Lr(Ω), r > N/2, B0 ∈ Lσ(Γ), σ > N − 1, B1 ∈ Lρ(Γ),
ρ > N − 1.

On the other hand, (2.3) must be replaced by
vt −∆v + C0(x)v = C1(x) in Ω

∂v

∂~n
+B0(x)v = B1(x) on Γ.

(7.3)

Finally (2.4) must be replaced by the assumption of the positivity of the first eigen-
value, λ1, of the eigenvalue problem

−∆u+ C0(x)u = λu in Ω
∂u

∂~n
+B0(x)u = 0 on Γ

(7.4)

Finally, note that the techniques above allow to recover in a unified way several results
contained in [1, 3, 4, 5, 7, 8]; see [9, 10].
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