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NEW CARDINAL INVARIANTS 
FOR TOPOLOGICAL SPACES1) 

P. R. MEYER 

New York 

The cardinal invariants mentioned in the title arise from the following question: 
for a given (arbitrary) topological space X, what is the smallest infinite cardinal m 
such that one can recover the topology of X from its convergent m-nets? (An m-net 
is a net whose directed set has cardinality :§m.) There are two ways of giving this 
question a precise formulation (see Section 1). Because they yield the Frechet spaces 
and the sequential spaces (as defined in [4]) for the case m = K0, the new invariants 
are called the Frechet character and the sequential character. Section 2 is devoted 
to the behaviour of these invariants with respect to the formation of subspaces, 
products, and quotients. Sections 3 and 4 contain results which are new for the case 
m = K0. In Section 3: for ordered spaces and their products, the sequential and 
Frechet characters coincide. In Section 4 new estimates are given for the cardinality 
of sequential spaces in terms of their density character. 

This work arose from a function space formulation of the Aleksandrov-Urysohn 
problem about the cardinality of first countable compact Hausdorff spaces. In spaces 
of real-valued functions, much is known about when the pointwise topology (---relative 
product topology) is sequential or Frechet. Similar results about when the pointwise 
topology is c-sequential or c-Frechet might shed light on the Aleksandrov-Urysohn 
problem. See [11] for details. 

Over the years, sequential and Frechet topologies have been studied under 
various names by many authors. For recent work see [1], [2], [4], [5], [9], [15], 
and their bibliographies. For other work on generalizations from sequences to nets 
of higher cardinality, see [1] and [16]. Proofs of some of the results in this paper 
are in [12] and [13]. 

1. The Sequential and Frechet Character of a Topological Space, We now need 
a precise formulation [12] of the idea of recovering a topology from its convergent 
m-nets. (For nets and other topological concepts we follow the terminology of [8], 
unless noted otherwise.) In a topological space (X, t), we form the m-closure of a sub
set A by adding to A all limits of f-convergent m-nets in A; we denote this set by 

*) The author gratefully acknowledges the support of the National Science Foundation, 
under Grant GP6411. 
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m-cl A, but observe that this is not a Kuratowski closure operator in general because 
it need not be idempotent. However, if m-cl A = t-cl A for all subsets A of X, 
we say that (X, t) is an m-Frechet space. More generally, if we can obtain the ^-closure 
operator by iteration of the ru-closure operator, we say that (X, t) is an m-sequential 
space. For the case m = K0, these definitions are equivalent2) to the usual ones [4], 
so that we may write sequential (Frechet) instead of K0-sequential (K0-Frechet). 

If (X, t) is an m-sequential topology, for each p in t-cl A there is a smallest 
ordinal rj such that p is in the t]-th iterate of the m-closure of A. The ordinal rj is called 
the m-Baire order of p with respect to A and is denoted by m-ord p. 

Although the m-closure operator is the most general closure operator to be 
considered in this paper, the construction carried out thus far can be done more 
generally; see [12]. This is useful for applications in which one is interested in some, 
but not necessarily all, of the convergent m-nets. Of course using a smaller collection 
of nets could increase Baire order. 

For an arbitrary topological space X there is a smallest m such that X is in-
sequential; this m is called the sequential character of X and denoted by a(X). 
The Frechet character of X is defined similarly and denoted by $(X). These numbers 
always exist and are topological invariants. They are related to a familiar topological 
invariant, the local character or point character %(X) (= the least cardinal m such 
that each point in the space has a neighborhood base of cardinality = m ) . The relation 
is seen in the following 

Proposition 1.1. For an arbitrary topological space X 

(1) a(X) = <2>(X) = X(X) , 

(2) <2>(X) = exp a(X). 

Proof. The first inequality in (l) is trivial and the second is clear. We now 
prove (2), i.e., prove that every m-sequential space is an exp m-Frechet space. Suppose 
that X is m-sequential, A is a subset of X and peclA; we must show that there 
is an exp m-net in A converging to p. This follows readily if we show that there is 
a subset B of A with p e cl B and card B = m. We proceed by induction on 1, the 
m-Baire order of p with respect to A. If X > 0 there is an m-net (xv, v e D) converging 
to p with xvec\ A and m-ord xv < X. By the inductive hypothesis there exists Bv a A 
with card Bv = m and xv e cl Bv. Let B = \J{BV: v e D). Then B is the desired set, 
because card B = m card D ^ m . m = m, and the proof is complete. (This argument 
is patterned after a similar one for Baire functions [10, page 491]; there the set B 
is called an "ancestral set" for p.) 

2) The equivalence follows from the fact that every countable directed set with no last 
element has a cofinal sequence. 
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We shall see later (Section 3) that, for a given infinite cardinal m, there are many 
spaces for which o = <P = x = m. On the other hand, Example \2 shows that 
X > exp o can also occur, so that the upper bounds for <£ in (l) and (2) are not 
comparable in general. 

Under the assumption of the generalized continuum hypothesis (2) cannot 
be improved; i.e., for any space X either <P(X) = o(X) or <P(X) = exp o(X)3 and 
both cases are known to occur. There are other inequalities which are also best 
possible in this sense: the upper bounds for o in 2A and for $ in 2.2. 

Example 1.2. Assume that m is a regular cardinal and X is a set of cardinality 
^ m with a distinguished point p. We define a topology on X by specifying that every 
point except p is isolated and a set containing p is open iff its complement has cardin
ality <m. In this case, o(X) = ^(X) = m and by increasing the cardinality of X 
we can make x(%) a s large as we please. 

2. Permanence Properties of Sequential and Frechet Characters. This section 
summarizes what is known on the extent to which the sequential and Frechet charac
ters are preserved (not increased) in passing to subspaces, quotients and products. 
The behaviour of the local character is also described for comparison purposes. 
It is interesting to note that in each situation there is a well behaved invariant, but 
no single invariant works for all three cases. 

2.1. Subspaces. If Y is a subspace of X then $(Y) <̂  @(X) [12] and of course 
x(Y) ^ x(X)- If Yis closed or open in X then o(Y) ^ o(X) [12], but a similar ine
quality for o does not hold in general. (In fact, in any space X for which o(X) < 
< <P(X), there exist subspaces Y for which o(Y) > o(X) [12].) Clearly, however, 
there is an upper bound for o(Y): for any subspace Y of X we have o(Y) S $(X). 
Thus every subspace of an m-sequential space is exp m-Frechet. 

Michael [7, page 44] has raised the question of characterizing the subspaces 
of sequential spaces. The above argument shows that it is necessary that such spaces 
be c-Frechet. It is an open question whether or not the condition is sufficient3); however, 
Michael (ibid.) has also given an example of a space X which is regular and c-Frechet 

3 ) The above condition is not sufficient, because it is now known that Michael's example, 
N u {p}, is not a subspace of any sequential space, regular or not (Fleischer and Franklin, 
On compactness and projections, Proc. Symp. on extension theory of topological structures, 
Berlin 1967). 

Lynn Imler has proved the following stronger result: every subspace of a sequential space 
is a c-space. (A c-space can be described as a space in which the closure of any set is the union 
of the closures of its countable subsets). This is stronger because it follows from the proof of (2) 
in Proposition 1.1 that every c-space is c-Frechet, The above counterexample also shows that 
the converse of Iniler's result is false. 
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but is not a subspace of any regular sequential space. (His example: X = N u {p}, 
with pepN - N) 

2.2. Quotients. The sequential character is the only invariant that is preserved 
with respect to quotients. If Z is a quotient of X, then 

(1) a(Z) = a(X\ 

(2) <P(Z) = exp a(X\ 

(3) x(Z) = exp card X. 

The inequality (l) was proved in [12] as a step in the characterization of m-sequential 
spaces as quotients of spaces of local character = m . (2) follows from (l). 

2.3. Products. In general x *s w e ^ behaved with respect to products, a and <P 
are not. However for some products a and <P are well behaved because they coincide 
with x (Section 3). 

Let X be the product of a family of topological spaces {X^. iel}, where each X{ 

is non-trivial (has at least one non-void proper open set). Then 

(1) a(X) = max {card/, sup {a(Xt): iel}}> 

(2) <P(X) = max {card /, sup {<P(X): i e /}}, 

(3) X(X) = max {card/, sup {X(Xl): iel}}. 

The fact that a(X) _• card / is proved in [13, Lemma 2]; the rest of (1) and (2) fol
lows from the fact that X{ is both a subspace and a quotient of X. 

A number of counterexamples have been published which show that equality 
does not hold in (1) or (2); see [2], [3], [6], [14]. 

3. Spaces for Which a = $ = x- The main result of this section (from [13]) 
is that for products of ordered spaces a = # = x- (Note however that the behavior 
of their subspaces is much more complicated; look at spaces of real-valued functions.) 
Greater generality is obtained here by generalizing the notion of an order topology 
(from that found for example in [8]) and by treating the extension to products 
separately. 

Definition. A locally ordered topological space is one in which each point has 
an open neighborhood which can be (totally) ordered so that the order topology 
agrees with the given topology in the neighborhood. 

A circle provides an example of locally ordered topological space which cannot 
be globally ordered (i.e., there is no total ordering of the entire space such that the 
order topology is the given topology). 
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Theorem 3.1. If X is a locally ordered space, then o(X) = <P(X) — x(X). 

The proof is essentially that given in [13] for ordered spaces. 

The next result shows that product spaces have the property a = <P — x if 
either there is a sufficiently large number of coordinate spaces or enough of the 
coordinate spaces themselves have the property. 

Theorem 3.2. Let X be the product of a family of non-trivial topological 
spaces [X(: is I}. Then o(X) = <I>(X) = x(X) if one of the following conditions 
holds: 

(a) card/ _ /(X^/Or each i in I, 

(b) For each i el there is a j el such that x(%j) _ x(^t) an^ a(X/) = x(X/)-

Proof. It suffices to show o(X) ^ x(%)- I*1 c a s e (a) w e have, by 2.3, o(X) _ 
_ card/ _ x(K). In case (b) let o(X) = m. Then by 2.3 and(b) it follows that, for 
each i, m ^ o(X3) = x(Xj) ^ x(Xt)- Since m _ card/, we can conclude that m _ 

= x(x). 

4. On the Cardinality of Sequential Spaces. It is well known that, for any Haus-
dorff space X, card X ^ exp exp 5(X), where d(X) is the density character of X 
(= the least cardinal of a dense subset of X). This estimate cannot be improved 
in general (consider for example fiN). However, for sequential spaces, the estimate 
can be improved while at the same time weakening the separation hypothesis to: 
sequential limits are unique. (For results on the precise extent to which sequential 
spaces with unique sequential limits need not be Hausdorff, see [5].) 

Theorem 4.1. / / X is a sequential space in which sequential limits are unique, 
then 

(1) card X _ exp S(X), 

(2) cardX _ (S(X)f°. 

Corollary 4.24.) A separable sequential space with unique sequential limits 
has cardinality _c . 

Corollary 4.3. / / X is a sequential space with unique sequential limits and 
S(X) is an infinite cardinal of the form exp n,for some n, then card X = 8(X). 

Proof. The proof is patterned after a standard inductive argument for counting 
Baire functions. Both parts of the theorem are proved similarly; we prove (l) here. 
Let X be a sequential space with unique sequential limits and let 7 be a dense subset 

) First proved by Lynn Imler (see [7. page 24]). 
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with card Y = d(X). Let Yn = {x e l : ord x = r/}, where ord x denotes the K0-Baire 
order of x with respect to Y(for sequences). 

Let Tn = \J{Ya: a < rj}. We show that 

(*) card Yn ^ exp 5(X) 

by induction on rj. It is clear for r\ = 0, since Y0 = Y Now assume that r\ > 0 
and card Ya S exp 5(X) for all a < rj. Then, since rj < col9 we have card 7^ ^ 
:_ Kt exp <5(K) = exp (5(K). Since every element of Yn is the limit of a sequence 
in T̂  and no sequence has more than one limit, we have card Yn ^ (card Tn)*° :g 
S (exp S(X))Ho = exp 8(X). This proves (*). From the fact that X = \j{Yn: f] < co^ 
we get card X ^ exp S(X) Kj = exp S(X). 

The first corollary is clear. To prove the second corollary, merely note that 
(2uf° = 2n*° = 2n. 
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