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A SURVEY OF MINIMAL TOPOLOGICAL SPACES 

M. P. BERRI (1), J. R. P O R T E R (2)1), AND R. M. STEPHENSON, JR. (3) 

New Orleans 

1. Introduction. Given a topological property P and a set X, we let P(X) denote 
the set of topologies on X with property P and note that P(X) is partially ordered 
by inclusion. A topological space (X>x) is minimal P (or P-minimal) provided T 
is a minimal element in P(X). The study of minimal topological spaces is a study 
of minimal P spaces. 

Closely associated with minimal P are P-closed (or P-complete) spaces and 
Katetov P spaces. A P-space (X, x) is P-closed provided X is a closed set in every 
P-space in which it can be embedded. A P-space (X, T) is said to be Katetov P pro
vided x is finer than some minimal P topology on X. 

P-minimal or P-closed spaces have been investigated for a variety of properties: 
P = Hausdorff, admissible, Banach, etc. We confine ourselves here to the cases 
in which P denotes various separation properties, and we mainly consider four 
types of problems: characterizing P-minimal, and P-closed spaces; embedding 
P-spaces in P-minimal or P-closed spaces; determining for which P it is true that 
P-minimality or P-closure is productive; and discovering which subspaces of P-
minimal (P-closed) spaces are P-minimal (P-closed). 

The terminology we use coincides with that in Bourbaki [Bo2], Dugundji [D], 
and Gillman and Jerison [GJ]; in particular, as used here, the properties of regularity, 
complete regularity, etc. include the 7\ separation property. 

A well-known topological fact is that the topology of a compact Hausdorff 
space is minimal Hausdorff i.e., it is not strictly finer (stronger, larger) than any other 
Hausdorff topology. This fact was proven first by A. S. Parkhomenko [Pa]. He also 
proved that a minimal Hausdorff space is Hausdorff-closed (shortened to H-closed 
in the literature). H-closure was defined by P. Alexandroff and P. Urysohn in [AU]. 
They also proved that a regular space is H-closed if, and only if, it is compact. In the 
same paper, they defined regular-closed and asked whether every regular-closed 
space is compact. Katetov [Kl] was the first to characterize minimal Hausdorff 
spaces, and he proved that a Urysohn space is minimal Hausdorff if, and only if, 

*) This research was partially supported by a University of Kansas research grant No. 
3416-5038. 
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it is compact. He also proved that every Hausdorff space can be densely embedded 
in an H-closed space which possesses properties similar to the Stone-Cech compactif-
ication. In 1941, N. Bourbaki [Bol] characterized minimal Hausdorff and H-closure 
in terms of filters. He cited an example by Urysohn [U] which was also an example 
of a noncompact minimal Hausdorff space. Bourbaki inquired whether the naturla 
topology of the space of rational numbers is finer than some minimal Hausdorff 
topology. 

In his book [Va] published in 1947, R. Vaidyanathaswamy proved that a com
pact Hausdorff space is minimal Hausdorff and asked if there existed a non-compact, 
minimal Hausdorff space. In two papers [Rl ; R2] in 1947, A. Ramanathan answered 
Vaidyanathaswamy's question in the affirmative by using (like Bourbaki) Urysohn's 
example. He derived the same characterization of minimal Hausdorff that Katetov 
[Kl ] derived. In 1950, F. Obreanu [Ol, 02 , 0 3 ] proved that the Lf-closure and 
minimal Hausdorff properties are productive. He gave a partial solution to Cartan's 
[Bol] question by showing that the natural topology of the space of rational numbers 
is not finer than any compact topology. 

In 1955, B. Banaschewski [Bal] investigated minimal P and P-closed spaces 
for P = Hausdorff, semiregular Hausdorff, regular, zero dimensional, locally compact, 
and completely regular. For the latter three, he proved that minimal P, P-closed, 
and compact are equivalent. He proved that minimal semiregular Hausdorff, semi-
regular Hausdorff-closed, and minimal Hausdorff are equivalent; proved that 
a minimal regular space is regular-closed; and remarked that a regular space in which 
every closed set is regular-closed is minimal regular. He asked whether a regular 
space in which every closed set is regular-closed is compact. In 1961, Banaschewski 
[Ba4] proved that a Hausdorff space can be densely embedded in a minimal Haus
dorff space if, and only if, it is semiregular. 

In 1963, N. Smythe and C. A. Wilkens [SW] proved that minimal normal 
spaces and normal, minimal regular spaces are compact. They asked whether a mini
mal regular space is necessarily compact. In 1963, M. P. Berri and R. H. Sorgenfrey [BS] 
answered a question by Alexandroff and Urysohn [AU], Banaschewski [Bal], 
and Smythe and Wilkins [SW] by exhibiting a minimal regular space which is not 
compact. In 1964, Berri [Be3] proved, for certain P, that minimal P and P-closed 
spaces are of second category and asked if every minimal Hausdorff space is of 
second category. In addition Berri answered the question posed by N. Bourbaki 
[Bol] by showing that the natural topology of the space of rational numbers is not 
finer than any minimal Hausdorff topology. In 1965, H. Herrlich [Hel] answered 
several questions posed in [BS] and [SW]. Since 1965, numerous papers and dis
sertations have appeared; most of them are listed in the bibliography. 

In this paper, JV will denote the set of natural numbers. The symbol \J[A | A e A] 
will be used to denote \J A. 

AeA 
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2. Techniques and Methods. We list five basic methods of obtaining coarser 
topologies-filters, cotopologies, compactness modulo an ideal, semiregularization, 
and weak topologies. 

The key in using the filter method is to define certain filter bases (called P-filter 
bases) in a P-space; a filter is a P-filter if the filter is generated by a P-filter base. 
Altering the terminology of [GJ] a filter (or filter base) SF is called free 
if C\[F | F G #"] = 0 (i.e., ^ has no adherent point) and is called fixed if f)[F | F e 
e #"] 7̂  0 (i.e. 3F has an adherent point). For each P-space (X, T), if # i s a free 
P-filter base in (X, T) and p e X, there is a coarser P-topology T(J% p) generated 
by the neighborhood base 

/ N _ ^(x), the T-neighborhood system of x for x ^ p 

" HF u F I Ve r(x) and F E ̂ ) for x = p . 

The filter method can also be used to obtain a P-space extension (Y, a) of a 
P-space (X, T) by letting Y — X = \jF | #" is a maximal element in the set of free 
P-filters}, where a is either the simple or strict extension topology on Y [Ba5]. 

If J4 is a collection of open filters on a space (X, f ) , we denote the disjoint 
union of X and Ji by XM and define fO*" to be the topology on XM generated 
by the sets V* = Vu {<#" e M \ Ve #"}, Ve f\ and if JV to be the topology on XM 

generated by { V | V n X e TT, and #~ e Ji n V implies that V n X e #"). (X^, iT^,) 
is called the simple extension space of (X, if) with filter trace Ji and (XM, i^M") 
is called the strict extension space of(X, if) with filter trace M. 

The method of cotopologies was first used in obtaining coarser topologies 
by J. Aarts and J. de Groot [AdeG], G. Strecker [Str], and G. Viglino [Vil]. For 
each basis M for a space (X, T), let %($) be the topology on X generated by 
{X - B | B e &}. (X, T(J*)) is called a co-space of (X, T); clearly, x(Jf) cz T. If (X, T) 
is a P-space, it is not necessarily true that each co-space is a P-space; however, there 
are enough P-cospaces to characterize minimal P and P-closed for certain P. For 
example in [Vi2], Viglino establishes the following result: A P-space (X, T) is minimal 
P if, and only if, {T(J>) | %{0) is P; %{$) ^ T} = 0, where P denotes any of the fol
lowing properties: 

(i) Hausdorff, (ii) Urysohn, (iii) regular, (iv) completely regular, (v) normal, 
(vi) locally compact, (vii) completely normal. 

If some co-space of (X, T) has property P, then (X, T) is called co-P. If every 
co-space of (X, T) has property P, then (X, T) is called totally co-P. 

The technique of compactness modulo an ideal was first defined and studied 
by R. Newcomb [N] in 1967. An ideal in a set X is a family of subsets of X satisfying: 

1. QeJ and XeJ, 



96 M. P. BERRI, J. R. PORTER, and R. M. STEPHENSON 

2. A, B e J implies AKJ B e J, and 

3. A e J and B c A implies Be J. 

Thus, an ideal is the Boolean algebraic dual to a filter in the set of all subsets of X. 
An ideal i i n a space (X, T) is a T-boundary provided T n J = 0. The set I(T) of 
nowhere dense sets is a T-boundary ideal. Let J be an ideal in (X, T). (X, T) is compact 
modulo <$ means that every open cover °U of X contains a finite subfamily Ul9..., Un 

such that X + \j[Pi | * = 1,. . . , w] e . / where .4 + £ is the symmetric difference 
(i.e., A + B = (A - B)v(B - A)). Let Ov denote \J[T\ TE T and T + U e J"]; 
T(J) is defined to be the topology generated by {Ov | U ET] (which is a base for 
T(</)). Clearly, T(*/) is coarser than T. AS in the cotopology method, (X, T(*/)) is not 
necessarily a P-space if (X, T) is a P-space. We note that if J is a T-boundary ideal, 
then T => T(-/) ^ T(I(T)). 

The semiregularization method was first defined and studied by M. H. Stone 
[Sto]. Let (X, T) be a space. A set U a X is regular-open if and only if U = (t/)0. 
The topology TS generated by the regular-open sets is called the semiregularization 
of T and is coarser than T. A space (X, T) is semiregular if and only if T = TS. A space 
(X, T) is semiregular at a point p in X if and only if {(D)0 | p e (7 e T} is a neigh
borhood base at p. 

The weak topology method is determined by the set C(X) of real-valued contin
uous function on a space (X, T). The weak-topology TW on X is the smallest topology 
on X such that all functions in C(X) are continuous. Clearly, TW is coarser than T. 
The space (X, TW) is completely regular if and only if (X, T) is completely Hausdorff, 
i.e., for each pair x, y of distinct points, there exists a real-valued continuous functionf 
such that f(x) ^ f(y). 

3. P = Hausdorff and Semiregular. In this section, we report the results of 
minimal Hausdorff spaces, FF-closed spaces, semiregular Hausdorff-closed, minimal 
semiregular Hausdorff and Katetov Hausdorff spaces. 

Theorem 3.1. (a) [Pa, Kl , Bol, Va]. A compact Hausdorff space is minimal 
Hausdorff. 

(b) [Pa, Kl , Bol, R l ] . A minimal Hausdorff space is H-closed. 

Definition. A family of open sets % in a space (X, T) is a proximate cover of 
(X, T) if and only if \J\JJ \ U E tfi\ is a dense subset of X. 

Definition. A filter base in (X, T) is an open filter base if every element is open. 
An open filter is a filter which is generated by some open filter base. An open ultra-
filter is a maximal element in the set of open filters of(X, T). 
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Theorem 3.2. Let (X,x) be a Hausdorff space. The following are equivalent: 

(a) (X, T) is H-closed. 

(b) [AU]. Every open cover contains a finite proximate subcover. 

(c) [Bol]. Every open filter base is fixed. 

(d) [Bo2]. Every open ultrafilter converges. 

(e) [Str]. (X, T) is totally co-semiregular. 

(f) [Str]. All the co-spaces of (X, T) are homeomorphic. 

(g) [Str]. (X, T) is totally co-Hausdorff. 

(h) [Str.]. (X, T) is totally co-H-closed. 

(i) [Str]. (X, T) is totally co-minimal Hausdorff. 

(j) [N]. (X, T) is compact modulo some x-boundary ideal in (X, x). 

Theorem 3.3. 

(a) [AU]. An H-closed, regular space is compact. 

(b) [Kl ] . H-closure is preserved by continuous functions onto Hausdorff 
spaces. 

(c) [02, CF, Hel] . A product of non-empty Hausdorff spaces is H-closed 
if and only if each coordinate space is H-closed. 

(d) [Kl ] . If (X, x) is H-closed and U ex, then U is H-closed. 

(e) [Kl ] . Every non-empty decreasing chain of non-empty H-closed subsets 
has a non-empty intersection. 

(f) [Kl, Sto]. If every closed subset of a space is H-closed, then the space 
is compact. 

(g) [Li]. A Hausdorff space can be embedded as a closed subset in an H-closed 
space. 

Definition. A subring K of C*(X) (the ring of bounded, real-valued functions 
on a space (X, x)) separate points if and only if for each pair of distinct points x 
and y in X, there exists fe K such that f(x) ^ /(y)- A space (X, x) has the Stone-
Weierstrass property if and only if(X, x) is completely Hausdorff and each subring 
K which separates points and contains all constant functions has the property 
that each fe C*(X) is the uniform limit of a sequence of functions in K. 

Theorem 3.4. Let (X, x) be a Hausdorff space. The following are equivalent: 

(a) (X, x) is H-closed and Urysohn. 

(b) [Kl ] . (X, TS) is compact. 

(c) [Pol] . (X, x) is completely Hausdorff and H-closed. 
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(d) [Pol, Pr]. (X, T) is H-closed and for every pair of disjoint H-closed subsets 
M, N of (X, r), there is a real-valued continuous function f defined on (X, T) such 
thatf(M) c {1} andf(N) <= {0}. 

(e) [Pol] . (X, T) is H-closed and has the Stone-Weierstrass property. 

(f) [Stel]. (X, T) is H-closed and TS = TW. 

(g) [Str]. Every filter base contained in [U \ U e T} is fixed. 

(h) [Str]. (X, T) is totally co-compact. 

(i) [Str]. (X, T) is totally co-compact Hausdorff. 

(j) [Str]. (X, T) is totally co-normal. 

(k) [Str]. (X, T) is totally co-regular. 

(1) [Str, Vil]. (X, T) is totally co-Urysohn. 

Theorem 3.5. [Kl ] . Each Hausdorff space (X, T) can be densely embedded 
in an H-closed space (X*, T*) satisfying the following properties: 

(a) If f: (X, T) -> (Y, a) is a continuous function where (Y, a) is Hausdorff 
and f(X) is dense in Y, then there is a set X <= M c= X* and a continuous, onto 
extension F: (M, (T*)M) -> (7, a) off. 

(b) If(Y9 a) is also compact in (a), then we can pick M to 6eX*. 

(c) / / (X, T) is densely embedded in a Hausdorff space (X0, T0) and (X0, T0) 
satisfies (a), then there is a homeomorphism (X*, T*) -> (X0, T0) which leaves X 
pointwise fixed. 

(d) (X*, T*) is a simple extension of (X, T). 

(e) If A c X is a closed nowhere dense subset in (X, T), then Clx*(^4) <= X. 

(f) [Li, PT]. (X*, T*) is a projective maximum in the set of all H-closed 
extensions of (X, T). 

Definition. The H-closed extension (X*, T*) of a Hausdorff space in 3.5 is called 
a Katetov extension. 

Theorem 3.6. 

(a) [K3, Ba3, I I ] . Let (X, T) be Hausdorff and not compact. The Katetov 
extension is not compact. 

(b) [Ba3]. Every noncompact, completely regular space (X, T) can be densely 
embedded in a noncompact extension which is a subspace of the Katetov extension 
of (X, T) and which has the Stone-Weierstrass property. 

Definition. Let (X, T) be a space. A subset A a X is regular nowhere dense 
closed if and only if there are a pair of disjoint open sets of U and V such that 
UnV=A. 
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The next theorem contains solutions to questions posed by Alexandroff [Al] . 

Theorem 3.7. 

(a) [F12, PT5 Vel]. Every noncompact, completely regular space is densely 
embeddable in a noncompact, H-closed space which satisfies the Stone-Weierstrass 
property. 

(b) [PT]. The Katetov extension of a Hausdorff space has the Stone-Weier
strass property if and only if every regular nowhere dense closed set in the semi-
regular ization is compact. 

We note that many other types of II-closed extensions and their properties have 
been developed in [F l l , F125 Fol, HS, K25 K45 Li5 02, 04, Po2, Po3, Pr, PT, Sto, 
StW, T, Vel, Ve2]. 

Theorem 3.8. [Bo2]. The set of isolated points is a denumerable. H-closed 
space is dense. 

The above theorem is a solution to Bourbaki's [Bol] problem and shows that 
the natural topology of the space of rational numbers is not stronger than any minimal 
Hausdorff topology. This problem was solved independently in [Be3, Hel, Pol] . 

Theorem 3.9. Let (X, %) be a Hausdorff space. The following are equivalent: 

(a) (X, %) is minimal Hausdorff. 

(b) [Kl, R2]. (X, %) is H-closed and semiregular. 

(c) [Bol]. Every open filter base with a unique adherent point is convergent. 

(d) [Str]. (X, %) is H-closed and %($) = % for some co-topology %($). 

(e) [Str]. (X, %) is totally co-minimal Hausdorff and semiregular. 

(f) [Vi2]. % = %($) for every co-topology %($). 

(g) [Vi2]. Every Hausdorff co-topology %($) = %. 

(h) [N]. (X, %) is compact modulo some %-boundary ideal J and % = %(*$). 

(i) [Bal]. (X, %) is semiregular Hausdorff-closed. 

(j) [Bal]. (X, %) is minimal semiregular Hausdorff. 

Definition. A Hausdorff space (X, %) is minimal Hausdorff at a point p in X if 
and only if for each Hausdorff topology a c %, [AT | p e intff IV} = (IV | p e intr IV}. 

Theorem 3.10. 

(a) [Kl, Bol, R2]. A minimal Hausdorff, Urysohn space is compact. 

(b) [03, Ik, Hel] . A product of non-empty Hausdorff spaces is minimal 
Hausdorff if and only if each coordinate space is minimal Hausdorff. 
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(c) [Scl]. If (X, T) is minimal Hausdorff, A is an open subset in X, and the 
boundary of A is compact, then A is minimal Hausdorff. 

(d) [Ba4]. A Hausdorff space can be densely embedded in a minimal Hausdorff 
space if and only if the space is semiregular. 

(e) [Str, StW]. A Hausdorff space can be embedded as a closed, nowhere dense 
subset of a minimal Hausdorff space. 

(f) [R2, Pol] . A space (X, T) is minimal Hausdorff at a point p in X if and 
only if (X, T) is semiregular at p and H-closed. 

Definition. A Hausdorff space (X, T) is locally H-closed at a point p if and 
only if p has a neighborhood which is H-closed. 

Theorem 3.11. 

(a) [Pol] . A Hausdorff space which is locally H-closed except at most one 
point is Katetov Hausdorff. 

(b) [N]. Katetov Hausdorff is hereditary on the complements of compact 
subsets. 

(c) [Ho]. Let (X, T) be a Hausdorff space. If (X, T) is the countable union 
of nowhere dense, compact subsets and if (X, T) is densely embeddable in a Baire 
space (a Baire space is one which is not the countable union of closed, nowhere 
dense subsets), then (X, T) is not Katetov Hausdorff. 

Example 3.12. In response to a question posed by Berri [Be3], Herrlich [He2] 
gives an example of a minimal Hausdorff space which is not of second category. 
Let JR0 be the set of irrational numbers in J = [0, 1] and i?3 be the set of rational 
numbers in I. Let X = R0 x {0} u Rt x {1} u Rt x {2}, and define T on X 
by a set U e % if 

(a) (x, 0)eU implies there is an open set V in I (usual topology) such that 
(x, 0) e (V x {0, 1, 2}) n X c U, and 

(b) for i = 1 or 2, (x, i)eU implies there is an open set Fin I such that (x, i) e 
e(Vx {i}) n X c U. 

Example 3.13. [Hel] . This is an example of an H-closed, Urysohn space (X, T) 
which is not minimal Hausdorff. Let IV be the set of natural numbers and X = 
= ([0, 1] x IV) u [a] where a $ [0, 1] x IV. The topology T is generated by the 
following neighborhood base: 

(a) for x e [0,1] x IV, the neighborhoods of x in the space [0, 1] x IV where IV 
has the discrete topology, and 

(b) for a, the sets Um = {a} u {(x, n)\xe (0, 1] and n > m] where m e IV. 
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Example 3.14. [U, Rl, Bol]. This is an example of a countable minimal 
Hausdorff space (X, T) which is not compact. Let X = {a} u {&} u {au} u {by} u 
u {ct} where i, j e N. The topology T is generated by the following neighborhood 
base: 

(a) for au and by, the sets {ay} and {by}, 

(b) for ci9 Un = {cj} u (ay, bj7 | j = w, w + 1,...} where w eiV, 

(c) for a, Vw = {a} u (ay | j G iV and i = n, w + 1,...} where n e N, and 

(d) for b, Wn = {b} u {bl7 | j eN and i = n, n + 1, ...} where w e AT. 

4. P = Urysohn, Regular and Completely Hausdorff. In this section we report 
the results of minimal P, P-closed, and Katetov P for P = Urysohn, regular, and 
completely Hausdorff. 

Definition. [Sc2], An open filter base Qf *w # space (X, T) is a Urysohn filter 
base if and only if for each p $ a($) (the set of adherent points of 5)5 there is an 
open neighborhood U of p and Ve % such that U n V = 0. 

Definition. Let °ll and *V be open covers of a space (X, T). V is a shrinkable 
refinement of % if and only if for each Ve 'V9 there is a Ue^U such that V cz U. 
An open cover is Urysohn if and only if it has a shrinkable refinement. 

Theorem 4.1. Let (X9 T) be a Urysohn space. The following are equivalent: 

(a) (X, T) is Urysohn-closed. 

(b) [Hel, Sc2]. Every Urysohn filter base has nonvoid adherence. 

(c) [Hel]. Every Urysohn cover of (X, T) has a finite proximate subcover. 

Theorem 4.2. Let (X, T) be a Urysohn space. The following are equivalent: 

(a) (X, T) is a minimal Urysohn. 

(b) [Hel, Sc2]. Every Urysohn filter base with at most one adherent point 
is convergent. 

(c) [Vi2]. Each Urysohn co-topology %($) = x. 

Theorem 4.3. 

(a) [Hel]. A compact Hausdorff space is minimal Urysohn, and a minimal 
Urysohn space is Urysohn-closed. 

(b) [Hel] . Urysohn-closure is preserved by a continuous function onto a 
Urysohn space. 

(c) [Sc2, Stel, Vil], A minimal Urysohn space is semiregular. 
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(d) [Hel] . A regular, Urysohn-closed space is compact. 

(e) [Hel] . The space of rational numbers with the usual topology is not 
Katetov Urysohn. 

Theorem 4.4. Let (X, T) be a minimal Urysohn space. The following are 
equivalent: 

(a) (X, T) is compact. 

(b) [Stel]. (X, T) is completely Hausdorjf. 

(c) [Stel, Vil]. (X, T) is H-closed. 

Theorem 4.5. 

(a) [Hel, Stel, Sc2]. If a product of nonvoid spaces is minimal Urysohn, 
then each coordinate space is minimal Urysohn. 

(b) [Stel, Sc2]. If a product of nonvoid spaces is Urysohn-closed, then each 
coordinate space is Urysohn-closed. 

(c) [Stel, Sc2]. The product of an H-closed, Urysohn space and a Urysohn-
closed space is Urysohn-closed. 

(d) [Stel, Sc2]. The product of a compact space and a minimal Urysohn space 
is minimal Urysohn. 

Theorem 4.6. 

(a) [Hel] . Every Urysohn space can be densely embedded in a Urysohn-closed 
space. 

(b) [Stel]. Every semiregular Urysohn space can be densely embedded in 
a semiregular, Urysohn-closed space. 

(c) [Stel]. Every Urysohn space can be embedded in a semiregular, Urysohn-
closed space. 

Example 4.7. [Hel] . This is an example of a minimal Urysohn space (X, x) 
that is not compact. For any ordinal number a, let W(cc) be the set of all ordinals 
strictly less than a. Let w0 be the first infinite ordinal and wt the first uncountable 
ordinal. Let R = [W(wt + 1) x W(w0 + l)] - {(wx, w0)} and Rn = R x {n} 
where n = 0, + 1 , + 2 , . . . Denote the elements of Rn by (x, y, n). Identify (wl5 y, n) 
with (wl5 y, n + 1) if n is odd and (x, w0, n) with (x, w0, n + 1) if n is even. Call 
the resulting space T. To the subspace E = Rt u R2 u R3 of T add two points a 
and b, and let X = E u {a, b}. A set F c l i s open if and only if 

(a) V n E is open in E, 

(b) a e V implies there exist a0 < wt and /?0 < w0 such that {(a, ft, 1) | J50 < 
< P S w0, a0 < a < w j cz V, and 
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(c) b e V implies there exist a0 < wt and /?0 < w0 such that {(a, /?, 3) | a0 < 
< a ^ w1? p0 < p < w0} c V 

Example 4.8. [Hel]. This is an example of a semiregular, Urysohn-closed space 
(X, T) which is not minimal Urysohn and which cannot be embedded densely in 
a minimal Urysohn space. Let I be the unit interval [0, 1] and let Il9 J 2 ,1 3 be pairwise 
disjoint, dense subsets of X such that I = \j[lt | i = 1, 2, 3]. U is open in I provided 
for each xeU n It there is an interval Se(x) = (x — e, x + e) for some s > 0 such 
that SB(x) nliCiU for i = 1 or 2 and Se(x) n I a U for i = 3. 

Definition, ylrc open filter base 5 in (X, T) is completely Hausdorff if and only 
tf for each p <£ adherence of $, there exist an open set U containing p, Ve 5? 
and a real-valued continuous function f on (X, T) such that f(U) = {1} andf(V) = 
= {0}. An open filter base g in (X, T) is completely regular if and only tf for each 
Ue%, there exist Ve% and a real-valued continuous function f on (X, T) such 
thatf(V) = {0} andf(X - U) cz {[}. 

Definition. Let "T and °ll be covers of a space (X, T). V is a continuous refinement 
of % if and only if for each Ve'V, there is U e°U and real-valued continuous 
function f on (X, T) such that f(V) cz {0} and f(X — U) c {l}. An open cover is 
completely Hausdorff if and only if it has a continuous refinement. An open cover % 
is co-completely regular if and only if % if a continuous refinement of itself. 

Theorem 4.9. Let (X, T) be a completely Hausdorff space. The following are 
equivalent: 

(a) Every completely regular filter base in (X, T) is fixed. 

(b) [Stel]. (X, T) is completely Hausdorff-closed. 

(c) [Stel]. Every co-completely regular cover of (X, T) has a finite subcover. 

(d) [Ba2]. (X, rw) is compact. 

(e) [Ba2]. (X, T) has the Stone-Weierstrass property. 

(f) [Ha]. Every completely Hausdorff filter base of (X, T) is fixed. 

(g) [Ha]. Each completely Hausdorff cover has a finite proximate subcover. 

(h) [Stel]. If a is a completely regular topology on X such that a c t , then 
(X, o) is compact. 

(i) [Stel]. There is a unique completely regular topology a on X such that 
o cz T. 

(j) [Stel]. For every completely Hausdorff space (Y, o) and continuous 
mapping f of (X, T) into (Y, a), f(X) is a completely Hausdorff-closed space. 

Theorem 4.10. [SSe]. A minimal completely Hausdorff space is compact. 



104 M. P. BERRI, J. R. PORTER, and R. M. STEPHENSON 

Theorem 4.11. [Stel, 2]. 

(a) / / the product of nonvoid spaces is completely Hausdorff-closed, then each 
coordinate space is completely Hausdorff-closed. 

(b) Let {Xa, Ta) | a e A} be a family of completely Hausdorff-closed spaces. 
(TIXa, nTa) is completely Hausdorff-closed if and only if (nTa)w = n(Ta)w). 

(c) Every completely Hausdorff space can be densely embedded in a completely 
Hausdorff-closed space. 

(d) If every closed subset of a space is completely Hausdorff-closed, then the 
space is compact. 

(e) A closed and open subset of a completely Hausdorff-closed space is com
pletely Hausdorff-closed. 

Theorem 4.12. [Ste4]. If X and Y are completely Hausdorff closed spaces and X 
is a k-space, then X x Y is a completely Hausdorff-closed space. 

Example 4.13. [Stel]. This is an example of a completely Hausdorff-closed 
space (X, T) on which there exists a free regular filter base and which is not of second 
category. Let X = [0, 1] with a denoting the usual topology, {X(n) \ n e N} be 
a family of pairwise disjoint, dense subsets of X such that X(2n — l) is countable 
for n e N. Let T be the topology generated by a u {X(2n — l) | n e N} u X(2n — l) u 
uX(2n)uX(2n + l)\neN}. 

Definition. [Bal, BS]. An open filter base g in (X> T) is a regular filter base 
if and only if for each U e 3f, there exists Ve $ such that V a U. 

Definition. Let % and if be covers of space (X, T). if is a regular refinement 
of ^U if and only if if refines % and if is a shrinkable refinement of itself. An open 
cover is regular if and only if it has an open regular refinement. 

Theorem 4.14. Let (X, T) be a regular space. The following are equivalent: 

(a) (X, T) is regular-closed. 

(b) [Bal, Hel] . Every regular filter base in (X, T) is fixed. 

(c) [Hel, Scl]. Every regular cover has a finite subcover. 

Theorem 4.15. Let (X, T) be a regular space. The following are equivalent: 

(a) (X, T) is minimal regular. 

(b) [Bal, BS]. Every regular filter base with at most one adherent point 
converges. 

(c) [Vi2]. Every regular co-topology x(SS) = T. 
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Theorem 4.16. 

(a) [Bal, BS]. A minimal regular space is regular-closed. 

(b) [Hel] . Regular-closed is preserved by continuous functions onto a regular 
space. 

(c) [Bal]. If every closed set in a space is regular-closed, then the space is 
minimal regular. 

(d) [Hel]. A completely Hausdorff, minimal regular space is compact. 

(e) [Hel, BS]. A completely regular, regular-closed space is compact. 

(f) [Hel]. The set of rational numbers with the usual topology is not Katetov 
regular. 

Theorem 4.17. 

(a) [Scl]. If a product of nonvoid spaces is regular-closed, then each coordinate 
space is regular-closed. 

(b) [Scl, SSo]. The product of a compact space and a regular-closed space 
is regular-closed. 

(c) [Scl]. If a product of nonvoid spaces is minimal regular, then each co
ordinate space is minimal regular. 

(d) [Ik, Scl, SSo]. The product of a compact space and minimal regular 
space is minimal regular. 

(e) [Stel]. A completely Hausdorff, regular-closed space is completely Haus-
dorff-closed. 

(f) [Stel]. A regular-closed space is of second category. 

(g) [Hel] . A Lindelof, regular-closed space is compact. 

Example 4.18. [BS]. This is an example of a minimal regular space (X, T) 
which is not compact. Let T be the space defined in example 4.7, and let 
X = T\j{p, q}. Let Qn = {(x, y, n) e Rn j x < wl9 y < w0}. A subset V belongs 
to T provided 

(a) V n T is open in T. 

(b) p e V implies there is n e N such that Qn u \j[Rt \i > n~] a V, and 

(c) q e F implies there is neN such that Q_„ u \j[R-i | * > n ] ^ v-

Example 4.19. [Hel] . This is an example of a completely Hausdorff-closed, 
regular-closed space (Y, a) which is not minimal regular. Let (7, a) be the subspace 
of the space (X, T) in example 4.18 defined by 7 = {p} \J \j\Rk\keN~\. 

Example 4.20. [Hel] . This is an example of regular space (X, T) which can 
not be densely embedded in a regular-closed space. Let R(i) be the subspace Rt u 
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u ... u Rt of the space Tin example 4.7. Let Ybe the topological sum of R(i) where 
i eN and denote elements of R(i) in Yby (a, /?, n, i) where 1 ^ n ^ i. LetK = 7 u 
{p} where p is an additional point. A subset V belongs to T provided V r\ Y is open 
in Yand p e V means there is an n e N such that {(a, /?, h, i) e R(i) | h = n, i ^ n} c 
<= K 

Remark 4.21. In [Har], Douglas Harris has characterized those regular 
spaces which can be densely embedded in regular-closed spaces. 

5. P = Completely Regular, Normal, Paracompact, Metric, Completely Normal, 
Locally Compact, Zero-dimensional, and Perfectly Normal. As mentioned in the 
introduction section, all the above properties are assumed to include the Hausdorff 
property. We observe that if a completely regular topological space is P-closed where 
P is a property common to all compact spaces, then this space is also compact. 

Theorem 5.1. For P = completely regular, normal, paracompact, metric, 
completely normal, locally compact, or zero-dimensional, if (X, T) is a P-space, 
then the following are equivalent: 

(a) (X9 T) is minimal P. 

(b) (X, T) is P-closed. 

(c) (X, T) is compact. 

For a p r o o f o f P = completely regular, locally compact, and zero-dimensional, 
see [Bal, Be2]. A proof of P = normal is located in [Be2] and [SW]. A proof 
of P = paracompact, metric, and completely normal is located in [SSe]. 

Theorem 5.2. [Ste3]. Let (X, T) be perfectly normal. The following are equiv
alent: 

(a) (X, T) is minimal perfectly normal. 

(b) (X, T) is perfectly normal-closed. 

(c) (X9 T) is countably compact. 

6. P = Tt and First Countable. 

Definition. A space (X, T) has the cofinite topology if and only ift = {0, X} u 
u {A czX\X - A is finite}. 

Theorem 6.1. [Be2]. 

(a) A Tt space (X9 T) is minimal Tx if and only if(X, T) has the cofinite topology. 
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(b) Every Tx space is Katetov Tv 

(c) Minimal Tt is hereditary. 

(d) A minimal Tt space is Hausdorff if and only if it is finite. 

(e) A product of non-empty spaces is minimal Tx if and only if each coordinate 
space is minimal Tl9 and either 

(i) there is only one coordinate space with more than one point or 

(ii) each coordinate space is finite and all but a finite number of coordinate 

spaces are singletons. 

We note that an infinite Tx space is not Tx-closed since a one-point extension 
can be constructed by defining the neighborhoods of the point to be cofinite sets 
containing the point. So, we easily conclude that a space is T\-closed if and only 
if it is finite and T\. This gives us an example of a topological property P for which 
a P-closed space is minimal P without the converse holding in general. 

Definition. If P is a topological property, then P(l) space will mean a space 
which is first countable and has property P; thus, a space is Hausdorff (l) provided 
it is Hausdorff and first countable. 

Definition. A space is feebly compact if and only if every locally finite system 
of open sets is finite (or equivalently, every countable open filter base is fixed). 

Theorem 6.2. [Ste3]. Let (X, x) be a Hausdorff (l) space. 

(a) The following are equivalent: 

(i) (X, T) is minimal Hausdorff (i). 

(ii) (X, T) is semiregular and feebly compact. 

(iii) Every countable open filter base on (X,r) with a unique adherent 
point is convergent. 

(b) The following are equivalent: 

(i) (X, T) is Hausdorff (\)-closed. 

(ii) (X, T) is feebly compact. 

(iii) (X, TS) is minimal Hausdorff (l). 

Theorem 6.3. [Ste3]. Let (X, T) be a Urysohn (l) space. 

(a) (X, T) is minimal Urysohn (l) if and only if every countable Urysohn 
filter base with a unique adherent point is convergent. 

(b) (Z, T) is Urysohn (l)-closed if and only if every countable Urysohn filter 
base is fixed. 
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Theorem 6.4. [Ste3]. For P = regular and completely regular, let (X, T) 
be a P(l) space. The following are equivalent: 

(a) (X, T) is minimal P(l). 

(b) Every countable P filter base with at most one adherent point is convergent. 

(c) Every countable P filter base is fixed. 

(d) (X, T) is P(l)-closed. 

(e) (X, T) is feebly compact. 

(f) (X, T) is minimal Hausdorjf (l). 

Theorem 6.5. [Ste3]. Let (X, T) be a zero-dimensional (l) space. The following 
are equivalent: 

(a) (X, T) is minimal zero-dimensional (l). 

(b) (X, T) is zero-dimensional (i)-closed. 

(c) (X, T) is pseudocompact. 

Theorem 6.6. [Ste3]. For P = paracompact, weakly normal, normal, complete
ly normal, and perfectly normal, let (X, T) be a P(l) space. 

The following are equivalent: 

(a) (X, T) is minimal P(l). 

(b) (X, T) is P(l)-closed. 

(c) (X, T) is pseudocompact. 

(d) (X, T) is count ably compact. 

Corollary 6.7. [Ste3]. A paracompact (l) space is minimal paracompact (l) 
if and only if it is compact. 

Theorem 6.8. [Ste3]. 

(a) A countable product of nonempty spaces is Hausdorjf (\)-closed if and 
only if each coordinate space is Hausdorjf (i). closed, 

(b) For P — Hausdorjf, regular, completely regular, zero-dimensional, 
weakly normal, a countable product of nonempty spaces is minimal P(l) if and 
only if each coordinate space is minimal P(l). 

(c) If a countable product of nonempty spaces is minimal Urysohn (l), then 
each coordinate space is minimal Urysohn (l). 

(d) If a countable product of nonempty spaces is Urysohn (i)-closed, then each 
coordinate space is Urysohn (i)-closed. 

(e) If X and Y are Urysohn (l)-closed spaces and X is absolutely closed, then 
X x Y is Urysohn (l)-closed. 
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(f) The product of a compact (l) space and a minimal Urysohn (l) space 
is a minimal Urysohn (l) space. 

Theorem 6.9. [Ste3j. 

(a) The closure of an open set in a Hausdorjf (ty-closed space is Hausdorjf 
(l)-closed. 

(b) For P = regular, completely regular, and zero-dimensional, the closure 
of an open set in a minimal P(l) space is minimal P(l). 

(c) If every countable closed set in a Hausdorff space is feebly compact, 
then the space is countably compact. 

(d) Every Hausdorff (l) space can be densely embedded in a Hausdorff (l)-
closed space and can be embedded in a minimal Hausdorff (l) space. 

Theorem 6.10. [Ste3]. For P = regular, completely regular, zero-dimensional, 
weakly normal, completely normal, and perfectly normal, a minimal P(l) space 
is of second category. 

The space in example 3.13 is Hausdorff (l)-closed and Urysohn (l)-closed but 
not minimal Hausdorff (l) or minimal Urysohn (l). The space in example 3.14 
is a minimal Hausdorff (l) space which is neither countably compact nor Urysohn. 
The space in example 4.8 is Urysohn (l)-closed, but not minimal Urysohn (l) or 
feebly compact. The space in example 3.12 is minimal Hausdorff (l) but not of second 
category. 

Example 6.11. [Ste3]. Let x be the order topology on the set X of all ordinal 
numbers less than the first uncountable ordinal. (X, T) is a minimal P(l) space for 
P = Hausdorff, Urysohn, regular, completely regular, weakly normal, normal, 
completely normal and zero-dimensional. (X, T) is not compact. 

7. Unsolved Problems. A Urysohn, FT-closed space is Urysohn-closed and 
completely Hausdorff-closed; and a completely Hausdorff, regular-closed space 
is completely Hausdorff-closed. This leads quite naturally to the following problem 
posed by Stephenson. 

Problem 1. [Stel]. Is a regular, completely Hausdorff-closed space necessarily 
regular-closed! 

Problem 2. Prove or disprove that the product of Urysohn-closed spaces is 
Urysohn-closed. 

Problem 3. Prove or disprove that the product of minimal Urysohn spaces 
is minimal Urysohn. 
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Problem 4. Prove or disprove that the product of completely Hausdorff-closed 
spaces is completely Hausdorff-closed. 

Problem 5. Prove or disprove that the product of regular-closed spaces is 
regular-closed. 

Problem 6. [Be2]. Prove or disprove that the product of minimal regular 
spaces is minimal regular. 

The embedding problem of finding necessary and sufficient conditions for 
a P-space to be embeddable (densely embeddable) in a P-closed space or in a minimal 
P space has been solved for P = Hausdorff and completely Hausdorff and partially 
solved for Urysohn and regular. Some remaining problems are listed below. 

Problem 7. Find a necessary and sufficient condition that a Urysohn space 
can be embedded (or densely embedded) in a minimal Urysohn space. 

Problem 8. Find a necessary and sufficient condition that a regular space 
can be embedded in a regular-closed space. 

Problem 9. Find a necessary and sufficient condition that a regular space can 
be embedded (or densely embedded) in a minimal regular space. 

Since each compact Hausdorff space is of second category, it is natural to ask 
which P-closed and minimal P spaces are of second category. The space of example 
3.12 is a minimal Hausdorff space which is not of second category. If, in the space 
of example 4.8, It and I2 are selected to be countable, then the space is a semi-regular, 
Urysohn-closed space which is not of second category. By 4.17 (d), a regular-closed 
space is of second category. The space in example 4.13 is completely Hausdorff-
closed but not of second category. This leads to the next three problems. 

Problem 10. Is a minimal Urysohn space necessarily of second category! 

Problem 11. [Ste3]. Is a minimal Urysohn(l) space necessarily of second 
category! 

Problem 12. [Stel]. Is a regular, completely Hausdorff-closed space necessarily 
of second category! 

Problem 13. Does there exist a noncompact minimal perfectly normal space! 

Clearly, an affirmative answer to problem 1 would imply an affirmative answer 
to probem 12. 
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For P = Hausdorff and completely Hausdorff, if every closed subset of a space 
is P-closed, then the space is compact. By 4.16 if every closed set in a space is regular-
closed, then the space is minimal regular. This leads to the next question posed 
by Banaschewski. 

Problem 14. [Bal], Is a space in which each closed set is regular-closed neces
sarily compact! 

We observe that a space in which every closed set is Urysohn-closed is minimal 
Urysohn. 

Problem 15. Is a space in which each closed set is Urysohn-closed necessarily 
compact! 

In [Kl ] , Katetov proved that an H-closed space is not only Katetov Hausdorff 
but also that there exists only one minimal Hausdorff topology coarser than an 
if-closed topology. This motivates us to pose the following problems. 

Problem 16. 

(a) Is a Urysohn-closed space necessarily Katetov Urysohn! 

(b) Is there only one minimal Urysohn topology coarser than a Urysohn-closed, 
Katetov Urysohn topology! 

Problem 17. 

(a) Is a regular-closed space necessarily Katetov regular! 

(b) Is there only one minimal regular topology coarser than a regular-closed, 

Katetov regular topology! 

N o t e : Problems 1 and 2 have been solved by Herrlich; problems 3,10,11, and 
13 have been solved by Stephenso; problem 16 has been solved by Porter. The solu
tions will appear. 

The authors have made every effort to include all the known references in the 
research on minimal topologies and give them their due credit. Undoubtedly, some 
errors and omissions have been made for which the authors now wish to express 
their apologies. 
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