S. Janakiraman; M. Rajagopalan Finer topologies in locally compact groups

In: Stanley P. Franklin and Zdeněk Frolík and Václav Koutník (eds.): General Topology and Its Relations to Modern Analysis and Algebra, Proceedings of the Kanpur topological conference, 1968. Academia Publishing House of the Czechoslovak Academy of Sciences, Praha, 1971. pp. [155].

Persistent URL: http://dml.cz/dmlcz/700593

Terms of use:

© Institute of Mathematics AS CR, 1971

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

FINER TOPOLOGIES IN LOCALLY COMPACT GROUPS

S. JANAKIRAMAN and M. RAJAGOPALAN

Madurai

N. W. Rickert [2] raised the following question: "Find the number of topologies between two given locally compact group topologies τ_1 and τ_2 on an abelian group G, and such that $\tau_2 > \tau_1$ ". In this paper we settle the question when (G, τ_1) is compact. The proof essentially reduces to considering the case when the finer topology τ_2 is obtained by declaring $\Phi(\mathbb{R}^n)$ open where $\Phi: (\mathbb{R}^n, \tau) \to (G, \tau_1)$ is a 1-1 continuous isomorphism and $\Phi(\mathbb{R}^n)$ is dense in (G, τ_1) and $\Phi(\mathbb{R}^n)$ receives the homeomorphic topology from $(\mathbb{R}^n, \tau), \tau$ being the usual topology on \mathbb{R}^n . We prove the following:

Theorem 1. If (G, τ_1) is a compact abelian group, (G, τ_2) is locally compact and τ_2 is finer than τ_1 , then the number of group topologies τ between them is either finite or uncountable.

One of the results which is of independent interest and which is used in proving the above theorem is:

Theorem 2. Let (G, τ_1) be a compact abelian group. Let (G, τ_2) be a locally compact group topologically stronger than τ_1 , obtained by declaring $K \times \Phi(\mathbb{R}^n)$ to be open as in Theorem 1 of [1]. Let τ_3 be a locally compact group topology of G such that $\tau_2 > \tau_3 > \tau_1$. Then $\tau_1 = \tau_2 = \tau_3$, when restricted to K. So K is compact and closed in τ_3 also. Then $(G/K, \tau_3^*)$ is between $(G/K, \tau_2^*)$ and $(G/K, \tau_1^*)$. Also $(G/K, \tau_2^*)$ is obtained by declaring $\Phi(\mathbb{R}^n)$ to be open. Conversely every topology τ_3 between τ_1 and τ_2 is obtained as the inverse of a topology τ_3^* of G/K lying between $(G/K, \tau_1^*)$ and $(G/K, \tau_2^*)$.

References

- [1] M. Rajagopalan: Topologies in locally compact groups, Math. Annalen 176 (1968), 169-180.
- [2] N. W. Rickert: Locally compact topologies for groups, Trans. Amer. Math. Soc. 126 (1967), 225-235.

MADURAI UNIVERSITY, MADURAI, INDIA