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INDUCED MOVEMENTS ABOUT FIXED POINTS 

L. E. WHYBURN 

Charlottesville 

Some years ago I made a study of the set of points which are fixed under a homeo-
morphic transformation of a subset M of a topological space into itself. It was pos
sible to show that the components of the complement of such a set of fixed points 
in M fall into groups of two types, one composed of a finite number of elements 
and the other of an infinite number. By putting restrictions on M or on the grouping 
of components or both we were able to establish certain properties of the components 
and of our set of fixed points: for example, if M is a sphere and there exists one 
group of components containing at least two elements, then our set of fixed points 
is a simple closed curve and our transformation T must be such that it merely inter
changes the two complementary regions of this simple closed curve [5]. 

The question naturally arises as to the effect of lightening the conditions on the 
function which carries M into itself. Consideration of peripherally continuous functions 
in connection with locally cohesive spaces affords some interesting situations. 

A function / : X -> Y is peripherally continuous at X G X provided that if 17 
and V are open sets about x and f(x), respectively, there is an open set W such that 
x eW a U and /[-F r(^)] ^ V, where Fr(W) is the frontier or boundary of W [1]. 

Theorem 1. Let X be a Hausdorff space and let f: X -> X be peripherally 
continuous, then the set F of fixed points under f is quasi-closed1). 

Definition. A set X is locally cohesive provided for any point xeX and any 
open set U containing x, there is a canonical neighbourhood containing x which 
together with its closure lies in U [2]. 

Theorem 2. IfX is a locally cohesive Hausdorff space andf: X -> X is peripher
ally continuous, let F be the set of fixed points under f and G be a component of 
X — F, then f(G) is connected. 

Definition. A collection C0, C1? C2, ...of components of X — F where X is 
a point set and F is the set of fixed points under f: X -» X, is said to form a finite 

*) A set K in a topological space X is quasi-closed provided for any x e X — K and any open 
set U containing x there is an open set V, x e V cz U, such that Fr(V) n K = 0. 
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rotation group provided (l) the collection C0, Cu C2, ... contains only a finite 
number of components, say n + 1, and (2) the components of the collection may 
be ordered in such a way that / (C0) = Cu / (Cx) = C2, . . . , / (Q) = C i + 1 , ... 
...,/(C„) = C0, where f(Cj) ^ Q /or i < f < n; or is said to form an infinite 
rotation group provided (i) the collection contains infinitely many components 
and (ii) it may be ordered C_2, C ^ C0, C l9 C2, ... where /(C f) = C / + 1 and 
/(C;.) # C;, i < j [5]. 

Theorem 3. Lei* X be a locally cohesive regular Hausdorff space, let f: X -» K 
be peripherally continuous, let the set of fixed points F be an inverse set and let 
f~x either be peripherally continuous or preserve connectedness. Then, the compo
nents of X — F divide up into rotation groups. 

Definition. A point set K is said to have property S provided, for any preas-
signed positive number s, K is the union of a finite number of connected set of 
diameter less than £ [3]. 

Theorem 4. If X is a plane continuous curve, f: X ~> X is peripherally conti
nuous, and the set of fixed points F is an inverse set, and Cj is an element of a finite 
rotation group, then 

Fr{Cj) = Fr(tc) = tFr(C). 
i = 0 i = 0 

Theorem 5. If X is a locally cohesive continuum in the plane and f: X -* X 
is peripherally continuous and the set of fixed point F is a closed inverse set, then 
any element C of a finite rotation group under f of order ^ 2 has property S. 
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