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On an example of Mary Ellen (Estill) Rudin 

J.M. Aarts and Eva Lowen-Co 1ebunders 

Delft Brussels 

The question of whether every Moore space can be (densely) embedded 

in a Moore space which is Moore-complete has been answered in the 

negative by Mary Ellen (Estill) Rudin in [E]. The proof involves a 

second concept of completeness for Moore spaces, called Rudin com

pleteness in [AL1], and it is based on the fact that there are Rudin-

cornplete spaces which are not Moore-comp lete. The example [Theorem 9 

of [E]] of such a space has been highly useful in the study of com

pleteness properties [ AL1 ] [ CCN][L][M][WW1][WW2] . 

The purpose of this paper is to simplify the example of [E] in such 

a way that its basic properties are preserved. The construction has 

been inspired by the "space V" of Is be 11, a description of which 

can be found in I G J ] . We adopt the notation of [AL1]. 

Example. 

For every real number x we taKe a maximal family C of sequences in 

IR\{x} converging to x, such that the intersection of any two is 

finite . 

Let X - (IR x ]0,1]) U ( U C ). A topology on X is defined as 

x£lR X 

follows. For x G IR, c G C
x
 w i t h c * *ci I i G m '* a n d f o r n G IN 

A 

let V (c) * {c} U {(y,z) | z G ]0,~] and y - c. for some i * n}. 

We taKe (V (c)) <-,... as a fundamental system of neighborhood- of c. 
n n^IN J & 

All singletons of IR x ]0,1] are defined to be open. 

The space X clearly is a Moore space. The sequence (3C(n)) ^-^ of 

open covers 
JfC(n) * < V

K
( c ) I x e i R , c e C x K*n} U { { ( y , z ) } | y G IR , z G ] 0 , 1 ] } 

is a nested development for the space. 

It can easily be seen that the space X is locally completely metri-

zable. The basic properties of the example are stated in the follo

wing theorem. 

Theorem. 

The space X is Rudin-complete, but not Moore-complete. X is comple

tely regular but not normal. 
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Proof. 

The first assertion is trivial since the collections (5C(n)) ,-_.., form 
n<=IN 

a Rudin-complete development for X. 

We shall now prove that X is not Moore-complete. In view of a result 

П Є І N 
of a of [AL2] stating that for any nested development (G(n) 

Moore-complete space there are subco1lections G'(n) of G ( n ) , n G IN 

such that (G'(n)) ^
T
 is a Moore-complete development, it suffices 

to show that there are no subcol lections 5C'(n) C 5C( n) such that 

(?C'(n)) £ T N is a Moore-complete development. Suppose on the 

contrary that there are subcol lections 5C'(n) C 5C( n) such that 

(ЗC'(n)) 
nGiN 

is Moore-complete, 

For n C JSJ let P be the following property for real numbers. 

The number x has property P if there exist a H £ 3C'(n) and a 
n n 

z > 0 such that ](x,0),(x,z)] C H . Then in each bounded interval 

all but a finite number of points have the property P . This asser

tion follows from the maximality of the families C . So we can 
x 

construct a descending chain of closed intervals (V ) <-._.., such that 
n n*=IN 

all points of V satisfy P . Take a point p £ O v and for n £ IN 
n n r- r- n 

ntzlN 
consider the closed set 1*1 s ] (p,0) (p ,ZU ] C H , where (z ) is a 

n r r n n n n 
monotonic sequence converging to 0. 
Moore completeness of X would imply that H M 

nGlN r' 
contradiction . 

That X is completely regular follows from the fact that the sets 

V (c) are elopen. 

We shall show that X is not normal. 

Consider the disjoint closed subsets Y, 

/ 0, which is a 

C Q and Y 2 

П Є І N ---
n 

Let W. and W
2
 be neighborhoods of Y. and Y

2
. Define a function 

f
Q
 : C

n
 -* IN such that V

f ( c )
( c )

 C
 W

1
 . 

The set A
n
 =

v
 {0} U {y | y .- c for some c •€= C Q and n >, f n(c)} is a 

neighborhood of 0 in the usual topology on IR as can be shown as 

follows. Suppose on the contrary that no interval containing 0 is 
1 1 

included in A n. Then for m ^ IN choose d £ ]—-—[ such that 
u m. m m 

d £ A r. The sequence d s (d ) c-TIU converges to 0 but d £ C n and 
m u ^ m np=IN b 0 

for any c £ C n we have that d O c is finite. This fact contradicts 

the maximality of C n. Analogously we define functions f : C -*• IN 

such that for c ^ C, we have V (c) C w 2 and show that the 

n 1(c) 

corresponding sets A. are neighborhoods of ~ on IR. It follows that 
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we can find an m G IN and a point p tZ (A
n
 \ {0}) H (A \ {-}). Thi 

implies that W,. H w t 
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