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Equicontinuity and the Theorem of ARZELA-ASCOLI 

in uniform convergence spaces 

G. KNEIS 

Berlin 

In this paper I want to give a general formulation of the 

classical Theorem of ARZELA-ASCOLI in the context of convergence 

spaces. Por the proofs the reader will be refered to my paper [7] 

and for details on convergence spaces to PISCHER [5] and W. GAHLER 

[6] . By the classical Theorem of ARZELA-ASCOLI, a subset H of the 

space of the continuous mappings of a closed interval into the reals 

or the complex numbers is relatively compact with respect to the 

uniform convergence if and only if 

(A) H is uniformly bounded 
and 

(B) H is equicontinuous. 

In the known generalizations as well as in the following one, H is a 

subset of a general function space C(X,Y)f the uniform convergence 

in C(X,Y) is substituted by the continuous convergence, and (A) is 

substituted by 

(A*) H(x) is relatively compact for all x of X. 

COOK and PISCHER [4l proved the Theorem for the case in which X is a 

pseudo-topological space and Y is a HAUSDORPP uniform space in the 

sense of BOURBAKI. SIMOMET [*10] proved the Theorem for the case in 

which X is a pseudo-topological space and Y is a pseudo-topological 

linear space with the CHOQUET condition. POPPE £9] gave a generali

zation for generalized uniform spaces in the sense of TUKEY and 

MORITA. 

1. In the following, the notion of pseudo-topology is used in the 

sense of PISCHER [5] and the notion of uniform convergence structure 

is used in the sense of COOK and PISCHER [4]. Por any set X, the 

filter in X consisting of all subsets of X containing a fixed set M 

is denoted by [Mj, the diagonal in X*X is denoted by A^. Pseudo-

topologies (and uniform convergence structures, too) on the same set 

X will be set-theoretically ordered. A pseudo-topology 6* on X is 

called finer than a pseudo-topology t on X and T is called coarser 

than er if Y(x) contains S(x) for all x^X and a uniform convergence 
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structure AJL on X is called finer than a uniform convergence struc

ture AQ on X and 40 is called coarser than 4* if AQ contains M. For any 

pseudo-topological space (X,r), we denote the finest topology on X 

coarser than T by t(r). A uniform convergence space (X,£) is called 

an uniform CHOQUET space if a filter VI in X*X belongs to u if and 

only if every ultra-filter TO&VL belongs to u. The pseudo-topology 

*ACa) induced by a uniform CHOQUET structure it on X is a CHOQUET 

pseudo-topology, that means a pseudo-topology such that a filter £ 

in X converges to a point of X if and only if every ultra-filter 

containing £ converges to the same point. Pseudo-topological CHOQUET 

vector spaces are examples of uniform CHOQUET spaces. Let (X,r) be a 

pseudo-topological vector space. Then the mapping w: (x,y) •-*' x-y 

defines a - canonical - uniform convergence structure MT on X with 

UeM,x if and only if w(tt)er(0) (see W. GAHLER [6], Bd. 2). <ir 

induces the vector pseudo-topology r on X and M^ is a uniform 

CHOQUET structure if and only if r is a CHOQUET pseudo-topology. This 

remark insures that the result of SIMOMET is a special case of our 

theorem. A uniform convergence space (X,<£) is called uniformly 

regular if with any filter (XtxX the adherence IX - relative to the 

pseudo-topology \(KL)X\(A*) - belongs to u. 

2. In the following, three natural notions of the relative compact

ness of a subset M in a pseudo-topological space (X,r) appear* 

(K1) Every ultra-filter £ in X with M e J converges (M is 

relatively compact in the generalized sense). 

(K2) The adherence of M with respect to the pseudo-topology r 

of X is compact (M is relatively compact). 

(K3) The adherence of M with respect to the finest topology 

t(r) coarser than T is compact (M is t-relatively 

compact). 

In the diagram 

K1< »K2 
/ 

/ 

K3 

(K1) implies (K2) if X is regular (there are counter-examples even 

for topological spaces, see BOURBAKI [2]). (K2) implies (K3) if X 

is separated. 
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3. Let (X,er) be a pseudo-topological space and (Y,u) a uniform 

convergence space. Por every x^X we define a mapping 

jPx:C(X,Y)*X-->Y*Y by <px(f,x
f) =* (f (x) ,f (xf)) . Then a subset H of 

C(X,Y) is called equicontinuous in the sense of COOK and PISCHER if 

for every x£X and every filter £ converging to x the filter 

y ([HjxC) belongs to AL. NOW we are able to formulate the 

Theorem jk Let (X,60 and (Y,r) be pseudo-topological spaces and let 

H be a subset of C(X,Y) (C(X,Y) is equipped with the continuous con

vergence). 

(i) If Y is separated then H(x) is t-relatively compact for every 

xeX if H is t-relatively compact. 

Por the further assertions let <L be an uniform convergence structure 

on Y and T=\(il) the induced pseudo-topology, 

(ii) If (Y9xi) is a uniform CHOQUET space then H is equicontinuous 

if H is relatively compact in the generalized sense, 

(iii) If (Y,>u) is uniformly regular, (YfX(u)) is a CHOQUET space, 

and (Y9t(X(u))) is separated then H is relatively compact if H 

is equicontinuous and H(x) is t-relatively compact for all xeX. 

Proving the Theorem the following useful known property of 

CHOQUET spaces is used: Let (Y,r) be a pseudo-topological CHOQUET 

space such that t(v) is separated. Then X and t(v) agree on any 

compact subset of Y (see COOK £21). We remark that every uniform 

CHOQUET space (Y,&) has an analogous property (see [8]): If the 

finest uniform structure 40 on X coarser than u is separated then AA, 

and M> agree on any compact subset of Y. 

Por any separated and regular space Y the space C(X,Y) is sepa

rated and regular, too. Pinally, respecting the equivalence of the* 

three notions of relative compactness for Y and C(X,Y) instead of X, 

we get the 

Theorem 2. Let (X,^) be a pseudo-topological space and let (Y,A) be 

a uniformly regular uniform CHOQUET space such that t (%(*£)) is 

separated. Then a subset H of C(X,Y) is relatively compact if and 

only if H is equicontinuous and H(x) is relatively compact for all 

x of X. 
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The theorem of SIMONNET for an arbitrary pseudo-topological space 

X and a regular CHOQUET vector space (Y,r) is a special case of our 

theorem if we use the canonical uniform convergence structure /^r. 

T is regular if and only if uT is uniformly regular such that our 

theorem can be applied. 

4. Finally, following ANANTHARAMAN and NAIMPALLY [1], we give a 

useful characterization of the equicontinuity by means of the notion 

of nonexpansiveness (I am indebted to Prof. S. A. MIMPALLY for the 

information about his results in uniform spaces). 

Let G be a family of mappings of a set X into X. For any subset U 

of XxX we define 

U = n((x,y) j (g(x),g(y))eu jntr , 

For any f i l t e r IX i n X*X l e t UL be the f i l t e r in X*X with the base 

[ IL | U £ 131 j . Then we have the 

Lemma• Let (X,£) be a uniform convergence space and G be a family 

of mappings of X i n t o X. Then the system i LTL j CltxX, VI £ L ^ v l } 

i s a base of a uniform convergence s t r u c t u r e ^ on X f ine r than um 

Proof. For any subset U of X*X with A^U, we have A <kUG and hence 

C/i] > \ for any f i l t e r Win XxX. For two subsets U and V of X*X we 

have UGi/VGc.(Ui/V)G and UG°VGC(U<>V)G
 a n d- hence ttGn')0G 2( \%a 10)Q and 

( '$„ c\0n) -2 ( U ^ I 0 ) r , r e s p e c t i v e l y , for two f i l t e r s it and 10 in X*X. 
U vjr Ir v * 

Consequently, £ V(„ | Dtext, Dl^[A-^]jis the base of an uniform conver

gence structure on X. On account of U^.^U for all subsets U of X*X 

we get vJL 2 IX for any filter and therefore u~ is finer than u* 

Remark. If we take (gxg) (x,y) = (g(x),g(y)) for a mapping g:X~-»X, 

obviously we have (g<g) (UG) §U for all gtQ, hence (g*g)($G) ̂  IX 9 

and hence (g*g)(<X-)£ <&« That means the uniform continuity of all 

the mappings geG with respect to u and *Z and therefore u is finer 

than the uniform convergence structure initiated by the family G 

(see W- GAHLER [6], Bd. 1). 

Definition* A family G of mappings of a uniform convergence space X 

into X is said to be nonexpansive with respect to the uniform con-

vergence structure <A of X if there is a uniform convergence struc

ture AQ on X with the following properties: 
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(N1) AO i s f i n e r than AJL . 

(N2) 'U and AQ induce the same pseudo- topo logy \(AI) = \(A6) on X. 

(N3) There i s a base A*Q o f A> such tha t for every We/Ho, WeTW, 
and g <i G 

( x , y ) e W = ^ ( g ( x ) , g ( y ) ) eW. 

Theorem 3* A semigroup G of mappings of a uniform convergence space 

X into X is equicontinuous if and only if it is nonexpansive. 

Proof. Let /u be the uniform convergence structure of X. First, let G 
be nonexpansive and let M and to be chosen according to the definition 
of nonexpansiveness. Let a filter f in X be convergent to xeX with 

respect to AZ. Then £ converges to x with respect to ><0, too, and hence 
there is a filter W of the base /HO of AO with fx] x £ i? ft?. For every 
W^lfX) there is an F £ $ with {xjxPSW and according to (N3) we have 

!fx(G*F)£W and therefore 9 X(C
G3 X$) - TO. Because of (N1), this im

plies the equicontinuity of G (with respect to AZ) • 
On the other hand, let G be equicontinuous. Then the structure^ 

introduced in the Lemma is finer than xt and hence \(£n) is finer than 

\(.u). Let a filter £ be convergent to x with respect to <£. Because of 

{x^xFc (((xJxF)(J<fx(GxF) ) Q for all F£ g , the filter fx]x£ contains 
the filter (( [x]x £ )n fx( [Gj* g )n|Ax3 ) G belonging to <uQ. Thus £ 

converges to x with respect to xL and \(*c) and X ( ^ ) agree. Finally, 

for VieAL with [z*-*!^ IX and U e IX we have 
(u,vHU G—^(u),g(v))e U =>> (f(g(u)),f (g(v)))^U for all f,g^G and 

hence (u,v)eUG===-^ (g(u) ,g(v)) 6 U G for all geG* This proves G being 
nonexpansive (with respect to JQ = /U* and the base 
*0 = {Û l ̂ UA i>xl 2l|}. 
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