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ON THE GEOMETRIC CHARACTERIZATION OF DIFFERENTIABILITY 

J. DURDIL 

Praha 

The aim of this contribution, which is a brief survey of my pa

pers [2,3,4], is to give three types of geometric characterization of 

differentiability of mappings in Benach spaces©(Till now, this pro

blem was successfully solved in finitely dimensional spaces only*) 

Throughout the paper, let Z be a Banach space, S*{z*Z:%z\\*l] and 

Br=-{zeZ:l!zil<r"i j the graph of a mapping F will be denoted by G{F) # 
The first type of the characterization mentioned above is the 

characterization by means of a tangent cone to the graph of a mapping© 

To this aim, the notion of a tangent cone to a set will be introduced 

as follows; 

Definition 1© Let ( C ,aeA ) be a net of cones in Z with a common a 
vertex z €Z# The conic limit of C is defined as the union of the one-o a 
point cone (z } with all cones CcZ with a vertex at z and with the 

property: for every t>0, tfrere is a ̂ A such that CcUc(C ) and C c 

<=Ue(C> whenever a>-a , where 

U. Z (C) * (z : z*z0+k(z*-z0), k^O, zMCníz *S))+ B* } 

is the conic £-neighbourhood of Cc We denote this limit by c-lim C 
acA 

and call it regular if it contains more than one pointo 

Definition 2, Let McZ be a non-empty set and z €M. Denoting 

C (M,z ) « (.z ; z=z +k(z*-z ), k^O, z»€Mft \\z»-z \l<r } r * o o o * * * o 
for r> 0, the set. 

Co(M,zo) * c-lim Cr(M,zQ) 

is said to be the tangent cone to M at the point z • 

The tangent cone defined in this way is always a non-empty closed 

cone with a vertex z (it may degenerate to the one-point cone 

{z ) in the case of 8n irregular limit)© It is in a close connection 

with similar notions of some other authors [1,5,6,81 but nevertheless, 

there is a difference there that makes possible to characterize Fr£-

chet differentiability of mappings also in infinitely dimensional spa

ces. 

Theorem 10 Let X,Y be Banach spaces, DcX, x an interior point 

of D and let F:D-^Y be a mapping© Then F possesses the Fr^chet deri

vative F'(x0) at x if and only if F is continuous at xQ and there is 

a continuous linear mapping L:X-*-Y so that 
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CQ(G(F), (xQfF(x0))) - (xQfF(xo)) + G(L) J 

in this case, it is F'(xo)«L# 
See C4] for the proof and other details. 

The second method of the geometric characterization of differen

tiability is based on the notion of a tangent. Our concept is a gene

ralization of the finitely dimensional one given in [7]© 

Definition 3o Let C be a cone in Z with a vertex at z cZ, let H 

be a linear manifold in Z of co-dimension 1 such that z eH0 The num

ber d = dist (Cn(z0+S),H) is called the deviation of C from H, the 

set C =- Z^lCu(-C)) is called the co-cone to C (in Z) and, denoting 

by <CH Az
0) "the system of all cones in Z with a vertex at zQ and 

with a deviation d from Hf the set 
Cfl d(z0) " O l C ' ; C» is a co-cone to some C s C H dCzQ) 

is called the circular co-cone in Z with a vertex at z and a co-devi

ation d from H (it is a co-cone to some cone in Z, too)© 

It is easy to see that 
CH d^o 5 * *z : z*z

0
+k(z»-z0), k^Q, ||z»-z0ll*lf dist (z>,H)^d} 0 

Definition 4» Let X,Y be Banach spaces, DcX, F;D-*Y, xQ an in

terior point of D and let P be a closed linear manifold in Z# The ma

nifold P is said to be tangent to the graph G(F) of F at the point 

z0*(x0,F(x )) iff F is continuous at x0, P~z0 is a graph of some con

tinuous linear mapping from X into Y and for every d>0, there is 

r(d)>0 such that 

G(F) n (z W ^ ) c 0 C> ,(zft) f 
0 r*d' Helffi H» d ° 

where IHI is the system of all closed linear manifolds H in XxY of 

co-dimension 1 having the property PcHo 

Now, the following theorem holds; 

Theorem 2. Let XfY be Banach spaces, DcX, F:D->Y and let x be 

an interior point of D. The mapping F possesses the Fr£chet derivative 

at the point x if and only if there exists a tangent manifold to the 

graph of F at the point (x0»
F(X0))° 

See £31 and [2] for the proof and other details. 

Finally, we comes to the third characterization of differentiabi-

lit3r0 In fact, it is a formal extraction of a basic approximation idea 

from the preceding characterization (see [2] for details)o 

Definition bo Let P be a linear manifold in Z, zeP and «->0„ 

The set 

ClP,zofO * (z : dist (z,|) ± £..||z-zo|| } 

is called the e-cone of P in Z with a vertex z « 
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Theorem 3o Let X,Y be Banach spaces, DcX, F:D~*-Y, x en interior 

point of Do Then F is Fr£chet differentiable at xQ if and only if F is 

continuous at x and there is continuous linear mapping L:X-*~Y such 

that for every e>0, there is $>Q such that 

G(F)n (zQ+B*
xY) c C(G(L)tzo,e) . 
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