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MONOTONE INCREASING COVERS AND PARACOMPACTNESS 

Y. KATUTA 

Tsukuba 

For the paracompactness many characterizations have been obtained 

until now. In this paper we give new characterizations in terms of 

"monotone increasing cover". 

For the countable paracompactness we have the following result 

which is essentially due to F. Ishikawa [1]: 

A space X Is countably paracompact if and only if for each 

countable monotone increasing open cover {U } of X, there exists a 

countable open cover {V } of X such that Vn C U for each n. 

Let X be a limit ordinal. We consider the following property, 

say P(X), for a space X: 

For each well-ordered monotone increasing open cover {U |a < X} 

of length X, there exists an open cover ll = {V |a < X, n=l,2,...} 

satisfying 

(1) V C U , 
a,n ^ a* 

(2) V M C
 vo whenever a < 3 < X, 

a ,n P , n 
(3) V = \j V for each limit ordinal 3 < X, 

_***. a<3 a , n 

(-0 V c V ... . v a,n <—• a,n+l 
If the cover ll satisfies an additional condition 

(5) .Vx T - . c »Vx W 
we say that X has the property P!(X). 

We have the following implications: 

P(X) + P(u)o) => Pf (X) => P(X). 

Theorem 1. A regular space X is paracompact if and only if for 

each regular ordinal X, X has the property P(X) (or P'(X)). 

Theorem 2. A regular space X is paracompact if and only if 

each well-ordered monotone increasing open cover of X has an open 

refinement ll = \J ll such that ll is cushioned in ll 1 for each 
n=l n n 1 

A subset G of a space X is said to be perfectly open, if 

there exists a sequence {G } of open sets such that G = \^J G and 
n n=l n 
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G C G
n+i

 f o r e a c n n. Obviously, 

cozero -=> perfectly open => open P . 

As an application of Theorem 1, we have the following theorem. 

Theorem 3- Let X be a subspace of a compact Hausdorff space 

Y. If for each compact set C in Y - X there exists a perfectly 

open set G of X x Y such that X x C C G and G Pi A = 0, then 

X is paracompact. Here, A = {(x,x)|x e X}. 

Corollary -I. Let X be a subspace of a compact Hausdorff space 

Y. If X x Y is normal, then X is paracompact. 

The corollary has been already obtained by K. Morita [2], * 

Next, let u be an infinite cardinal. Corresponding to Theorems 

I and 2, we have the similar characterizations for the u-paracompact-

ness; in this case, a space must be normal. 

Theorem 5. A normal space X is u-paracompact if and only if 

for each regular ordinal X < u, X has the property P(X) (or PT(X)). 

Theorem 6. A normal space X is u-paracompact if and only if 

each well-ordered monotone increasing open cover of X with length < 

u has an open refinement ll = I / II such that 1/ is cushioned in 
n=L n n 

II ,. for each n. n+l 

Let X be a limit ordinal and let W(X+1) be the space consist

ing of all ordinals < X with the order topology. The property P?(X) 

on a space X is characterized in the product space X x W(X+1) as 

follows. 

Theorem 7- A space X has the property P'(X) if and only if 

for each open set G of X x W(X+1) with X x {X} C G, there exists 

a perfectly open set H of X x W(X+1) such that 'X x {X}C H C G. 

Corollary 8 (K. Kunen). Let u be an infinite cardinal. If 

X x W(u+1) is normal, then X is u-paracompact and normal. 

The corollary follows from Theorems 5 and 7> and the converse is 

also true by K. Morita [2, 'Theorem 2.2], 
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