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TOPOLOGICAL CONSIDERATIONS IN THE FOUNDATIONS 
OF QUANTUM AND TIME THEORIES 

Anastase Kartsaklis 
Dept. of Mathematics, University of Patras, Patras, Greece. 

Abstract I. P. Jordan, J. v. Neumann and E. Wigner have shown the power of an 
algebraic approach to quantum theories [6] . The greater weakness of the above work 
was that the set of observables has a finite linear basis. This set was later equipped 
with a convenient topological structure. The first attempt was done by von Neumann 
£LO] . From a mathematical point of view the topology induced by von Neumann was lac
king a plausible phenomenological motivation. In fact, the concept of state played 
no a substantial role in that work. Since the concept of state is of great .Importance 
for the physical motivation, we equipe the set 0 of observables with the natural 
topology. 

U . In the second part of this paper we define in a simpler way the chronological 
topology O, and then we give some criteria and conditions so that -̂> n - ̂ hron* 
Some different concepts of time are then presented and criticized. 

Part I. We consider the following well known axioms and definitions •. 
Axiom I. We can correspond to each physical system a triple (O^y, (|) ), which 

consists of the set U of all of its observables, the set u of all of its states and 
( I ) : 0 X 7 —^IR , which corresponds to each pair (0,i|0e&'*!/ a real number 
(iM°) interpreted as the expectation value of the observables 0, when the system is 
at the state f. 

Definition 1. A subset HQ\f is called full with respect to a subset J ̂  & iff 

(VqcftCvc^flfCo.k <o,|x ̂ (fo J/)[(*|o.K(.|,M]) ̂  o^oj, 
where 0j% is the restriction of the map (\\)\0):J-TR to the subset IC^o . 

Axiom II. The above defined binary relation is a partial order relation. In 
particular, it holds (0.^ 0Z A 0. > 08) =^0X = 0*. 
If 0t 90z£&, then the family {(^(0, ) +(<J! |0 t)} y defines an observable . [l] , [2] , 

N . 
Axiom III. (i). (3Oe0)(3Ie(?) (VfeV) [f>|0) - o A (Y|1)-j]. 

(ii). CVOe6')(VkelR)(3kOe(?)(V^eV)[(t|kO) =k(^|0)]. 
(iii).^(0.,0:JeC(x^(3O1 + O ie0)(V^V)[( t|0 It0.) s( t/0 i) + (1|,|00]. W , t - ] . 

This axiom provides the U with a real vector space structure. On the basis of 
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definitions of the addition and multiplication by scalars the elements of j are real 

linear functionals on 0. 

Definitions 2. Let JQ be the set of all dispersion free states on 0 . A subset 

3CQJ/ is called complete iff it is full with respect to the subset 

d1.{0eCf.!-
,
p .?*)£#, 

deterministic for a subset J Q$ iff J Q 0^ and compatible iff the set 

V ~ I 1 V. is complete. 

We can correspond to each (04 ,Ot)e(jxO' an element 0±* O^eu , called the 

symmetrized product of 0t and 0Z , which is defined, as follows : 

We define, for each triple (01 , 0a ,03)ed
3, the associator, as follows: 

If J is any subset of tf , then Vf = Q ^ and 0 ^ = Cf(J). 

Axiom IV. For each (0t , 02 , 05) e 0^ , in which 0A , 0^ are compatible, the 

associator [0. 90z , 05 \ vanishes. 

The set Cf is an abelian Jordan algebra.[2] . 

Definitions 3. For every OeU and every complete set 3C Q jQ , we define 

(i), w(O lX)«(ae* +:^
€^)[lW0)K«]JclR + and 

(ii). Nx(0) 5?.U.{w(0,X)\f.IR+. 

Theorem 1. N (0) is independent of ^ £ J 0 and it is equal to N(0) = sup|(ip)o)|. 

Remark 1. From the above theorem follows that 

^kcR)(V(01,0a)eCfxe()[N(Wq)r|k|.N(Oi^ A N (0, + 00 * N CO,) + N (0,S]. 

and the vanishing of N(0) occurs only whenever 0 = 0. 

Hence holds the following corollary: 

Corollary N is a norm on Q and 

(VCO.^e 0xV) [10HO)!^N(0)]. 

Remark 2.0 is now equipped with a real Banach space structure relative to the 

natural norm introduced above, and the states ipe:/ are positive linear continuous 

functionals on Cf with respect to the topology induced by this norm. We shall now 

extend V to the set of all such functionals on U . 

Axiom V, The norm of any element Oeu is finite and 0 is complete, if it is 

considered as a metric space with distance between two any elements 0X , 0, e <3 , 

defined by N(0t -0^). Hence V is. identified with the set of all continuous positive 

linear functionals ty on & , which satisfy the condition (ip | X) = 1. • 

Main theorem. The following statements hold: 

(VfeV) (V0,eCr)(NG,e<3') 

(i). [|(^|01*0j|4N(01)NCOl)]. 
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(ii). [ N (0, « 00 ^ N (00 • N (0.)]. 

(iii). [N (0.*- 0;;) * N CO, - 0 0 • N (0. + 0,)]. 

In order to prove the main theorem, we use the following leninas : 

Lemma 1. (VO^tf) (YO.eCT) [N(0,-) = N*(0:)A N(O;-0^trwljN2(Oj), N ' O ^ } ] . 

Lemma 2. (i). The Schwarz inequality holds ; 

fy^V) (V^.OOeCf') [(*|0i*0k)&Ct|»|0*).(t|0;)]. 
(ii). Let 0t be any element of O and i|<€ 70 . Then 

(VC\£tf) [( + 10.-0,) - ( ^ l o o - ' c * ! ^ . 
Proof of main theorem. From Schwarz inequality and the previous results we have 

(j,|0.*O,.)1 6 (HO.nilW * NCO/>N(0t') --N^OJ. H\(Ot). 

This result proves the statement (i) 

The statement (ii) follows directly from (i). 

From the distributivity of the symmetrized product follows 

°i " ° * =(0i ~ 0a ) # ( 0i + 0 e } ' 

From (ii) and the above property follows the truth of (iii). 

Remarks 3. a. The statement (ii) expresses the continuity of the symmetrized 

product with respect to each of its factors. 

b. The statement (iii) expresses the continuity of 0^ with respect to 0x . 

Part II. Topology and time theories. 

Definition. A space - time M is a real four - dimensional connected C00 Hausdorff 

manifold with a globally defined C00 tensor field g of type (0,2), which is non-

degenerate and Lorentzian. By Lorentzian (or hyperbolic normal) is meant that for any 

xeM there is a basis in Tx = Tx (M) (the tangent space of M at x) relative to which 

g has the matrix diag (1,-1,-1,-1). [5] . 

The metric would be used only for the definition of the structure of the null -

cone of M, namely: 

Let M be a space - time and xeM. Any tangent vector u e T x is said to be: time

like, spacelike or null according as g (u ,u) (. = g «& X* X* ) is positive, negative 

or zero respectively. The null cone K at x is the set of null vectors in T^ . The 

above definition means that: a tangent vector ueT^ is timelike (null, spacelike) 

iff u lies in the interior (respectively on, exterior) of K x . The cone K disconnects 

the timelike vectors into two separate components. A space - time is called time -

orientable (or temporally - orientable) if it is possible to make a consistent 

continuous choice all over M, of one component of the set of timelike vectors at each 

point of M. To label the time like vectors so chosen future - pointing and the 

rerriaining ones past - pointing is to make the space - time M time - oriented. A space-

time is clearly time - orientable if there exists a nowhere vanishing timelike vector 
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field. The converse is also true. This follows from general theorems on the existence 

of cross - sections of fiber bundles (the fiber consisting of future - pointing time

like vectors at a point being "solid") [8] . 

Once a choice of orientation has been made on M, then an orientation is induced 

on certain curves on M as follows: 

A smooth parametrized curve y of M is a future directed timelike (causal) curve 

iff the positive tangent vector to y at every point x lies in the future lobe of K x 

(lies inside or on the future lobe of K x ). 

Definition of a causal space. A causal space is a quadruple (M,-*?. -4 } f ), 

where M is a point set (of course with cardinality at least jt), and -<J ,J^ , / are 

three relations on M., which, for alia , v , x c M, satisfy the following axioms: 

I. x^x 

II. (a-^ Lj A ̂ 4 * ) *=** *--<. * 

III. (a^uA ̂ x ) . ^ x=ij 

•IV. x-^x 

VI.a. (x^i^ A ̂ 4 x)==> TC-^T: 

D. (x-?l| A U^*) =$> -X^X 

Examples. Minkowski space, Lanczos universe, de Sitter universe. 

Counterexample. Einstein universe 

We introduce the following definitions: 

Ux).:LeM; ^Hi : tne chronological future of x . 

L Cx) = (vieM •• M*^x\ • the chronological past of a . 

3 Cx")= (IJGM -. "x^^l tne causal future of x . 

3 ex)r|u£.M : V^*\ : the causal past of x . 

It is possible to introduce the following relations .-^ and f , as follows: 

a. x^ij *=*> (-> &0 D lt Cy)
 A It

 c ^ C It O p ) . 

b. x / ^ ** (x^u A x-f^). 

x̂ Ji} and x-^u , x,u & M, mean respectively, that x causally preceeds y, 

and x chronologic-ally preceeds \± , i.e. x^M. ^? there is a future directed affine 

causal curve of nonzero length from i toil , and x-̂ ij. iff there is a future 

directed affine curve of nonzero length from x to u. Now B C-O = 3 co U *3r C -O 

is the set of points causally connectible with x in the sense that it is physically 

possible for a causal signal of nonnull length to connect ij with x in case ye "Boo 

The events are considered as unextended in the classical sense; if space - time is 
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taken as primitive, they are events which are localized at a space - time point. 

Theorem. Let (M,-^) a prerdered set, which satisfies the following property: 

(VCvOeMxM) [L^x)3ir(M)A ltc-o= i<c.p = > x ^ ] . 

The quadruple (M,^ , ̂  , / ) - where ^ , f are the above introduced relations, is a 

causal space. 

Remark i. The preorder ̂  guarantees us that twisted light cones are excluded, 

because -x̂ -u. and \-\~*- would imply the contradiction that a-^x . 

We denote by capital letters X, Y, Z events, which take place at the space -

tine points x , u , % , respectively. An obvious and effective criterion of spatio -

temporal coincidence.which can be formulated in terms of causal connectibility,is the 

following: 

(CA ) : X and Y are spat lot empo;rally coincident iff, for every Y, Y is causally 

connectible with X, iff Y is causally connectible with Y. [}\] , [7] . 

(Ct ) is sufficient only for those of the space - times, which sarisfy the 

following condition: 

(C2 ) : (V(X)V)£ / M ^ ) [ 3 f U ) = l { C ^ A 3 r C x ) = V j ) ^ *--!,] ,[9] . 

Condition (Cz ) is not satisfied in many space - times, encountered in the general 

relativity. Any space - time in which (Cz) fails is physically unreasonable. A space-

time which contains closed causal curves violates our everyday conception of causation. 

But M need not contain closed causal curves in order for (Ca) fail. It is true how

ever, that if (Cfc ) fails, the following condition will not hold for every oceM (it 

is equivalent to say that M will contain "almost closed" causal c u r v e s ) . 

(Cj ) : Every open neighborhood in L> of x contains an open neighborhood 

which is not entered twice by any causal curve. 

The chronological topology G, of space - time M is the coarset topology, 

in which I« ĉ O D I Cu) are open, where -x , u range M. 

If M satisfies a condition somewhat weaker than (C5 ) that is 

(C. ) : M contains no almost closed timelike curves, then Q^„^ - ̂  ,. . ^ fy, cnron man 
Conversely, if K - ̂  , then (C, ) holds [7] . J' chron man' * ' L J 

Some different concepts of time. A. According to the Ancient Greeks' picture of 

the world, space - time M was a Cartesian product of time T and space S [11} •. to 

any event one could assocciate an instant of time t and a location in space s; both 

time and space were absolute. 

B. In Newtonian physics, space - time M may be represented as a product T x s 

in many ways. Space is relative because there is no absolute method of ascertaining 

whether or not two non - simultaneous events happen at the same place. In other words, 

there is no natural horizontal slicing of M; there is only a vertical fibring 

corresponding to the projection it: M —i*T,which associates to any event x e M the 

corresponding instant of time t - u(x) ; or time is absolute. 

C. Time in the Galilean space. We denote by Jul the Galilean category, which 

has Galilean spaces as objects. A Galilean space is an affine space (M, V,+ ) 
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endowded with a bilinear map 9: V*x V*-> l!( , which is (i) symmetric, (ii) positive, 

and (iii) of rank n-1, where n = dim V. M is the underlying set, V is the associated 

vector space and + denotes the transitive and free action of the additive group V 

in M. If jf and H are two categories, we denote by x a covariant functor. If 

(M4 , V4 , + , cp ) and (Ma , Vt , + , cpt ) are two Galilean spaces, the affine morphism 

f is a Galilean morphism if <p o ( T f )* = <D .A Galilean automorphism is called a 

Galilean transformation. Let A C V* be the null space of cp and B c V the subspace 

of all vectors orthogonal to A. For any Galilean space G = (M, V, + , cp) the quotient 

space T = M/s Is called absolute time of G. If 11: M —>T is the canonical projection, 

then (M, T, 71) is a fiber bundle with B as the typical fiber. The relation of absolute 

time to Galilean transformations is described by the following theorem: 

Theorem. Let Hun be the category of differentiable bundles. There is a covariant 

functor a: 9ai -^%an defined by a(G) = (M, T, it) and o(f) = (f, a), where f :M —* M 

is a Galilean morphism and a: Tt -> T z is the unique map satisfying û o-f = <x © 1̂  . 

D. The concepts of open and closed time. We assume that a space - time M, which 

Is considered tme - orientable, can be partitioned by a family of spacelike hyper-

surfaces [3] . This allows one to namufacture a time T: T is the quotient of M by the 

equivalence relation xHxi which holds between %, -y e M iff x and ̂  lie on the same 

hypersurface, i.e. an instant of T is an 'fc'̂H. - equivalence class of points of M. 

Now if no future (or past) directed timelike curve of M intersects more than anyone 

of the hypersurfaces corresponding to the instants of T, we can define a mapping 

P : T —>R such that: 

(i). The fibers of P are in 1 -1 correspondence with the instants of T and 

(ii). for any 1, it e M, if there is a future directed timelike curve of nonzero 

length from x to u , then K (a) <̂ P( u) . 

In this case, T is called open. 

Temporal separation. It is intuitively clear that for the model of tetradic 

relation " X, Y separate Z, W ", on a circle K means that: to get from Z to W one 

has to go around the circle K, passing over X or over Y. 

Analogously, we say that T is closed if there is a mapping G: M-vK (K = circle) 

such that: 

(i) the fibers of G are in 1-1 correspondence with the instants of T. and 

(ii) for any to , x , u , x e M, if these points are distinct and there is a future 

directed timelike curve from 10 to x , from x to ̂  ,and from u to % , then either this 

curve intersects all of the hypersurfaces of M which correspond to the instants of 

T or else the points G(a>), G(y) separate the points G(x), G(y) on the circle K. 

Remark 2. Some interesting solutions of the field equations of general relativity 

cannot be partitioned by spacelike hypersurfaces [3"j and other solutions cannot 

accept a unique global space - time hypersurfaces or "time slice". In these cases time 

T cannot even be defined, and problems of time openess and | or time closedness do not 

arise. There are examples of relativistic space - times, from which we can manufacture 
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a time T, which satisfies neither the above openess nor closedness criterion. 
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