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COMPACT HAUSDORFF SPACES WITH TWO OPEN SETS 

J. MIODUSZEWSKE 

Katowice 

Alan H. Schoenfeld and Gary Gruenhage C7J have shown that if a 

compact metric infinite space X has, up to a homeomorphism, only two 

op)en non-empty subsets, then it is homeomorphic to the Cantor set, by 

proving that (1) X does not have isolated points, and that (2) X is 

totally disconnected. For the brevity, the phrase the_space with two 

open sets will be used. We discuss here (infinite) spaces with two open 

sets which are compact and Hausdorff, however not necessarily metric. 

We show that if X is a compact Hausdorff (infinite) space with 

two open sets, then (3) X has a countable base around each closed 

(non-open) subset, (4) X has the Souslin property hereditarily, still 

having properties (1) and (2). The space called "the double arrow", 

described in M^moire by Alexandroff and Urysohn, 1929, is a compact 

Hausdorff separable non-metric space with two open sets. 

When the space S is not separable, then it is nowhere separable, 

and we show that (5) X is the union of an increasing sequence of H-* 

nowhere dense separable closed subsets; from this immediately follows 

that (6) X contains a dense subset of cardinality X-, , and that 

(7) X has cardinality that of continuum. Such a space, having the 

Souslin property and the property (5), cannot be constructed within 

ZFC, since the existence of such a space contradicts the axioms of the 

theory ZFC • ( .H x < 2 ° ) + Martin's axiom. However, if there exist 

homogeneous Souslin lines, then compact Hausdorff non-separable spaces 

with two open sets can be constructed in the same way as "the double 

arrow" is constructed from the real line; the existence of homogeneous 

Souslin lines can be shown in the theory ZFC + 0 -hypothesis (see the 

book by Devlin and Johnsbraten f2] , p. 39). Thus, the existence of 

compact Hausdorff non-separable spaces with two open sets cannot be 

also disproved within ZFC References to the consistency results need

ed here can be found in the book by Jech C3J and in the book [2] , loco 

cit. 

Conjectures. 1. The strongest one is that the compact Hausdorff 

spaces with two open sets are ordered ones; this means, in particular, 

that they are Souslin spaces if they are not separable. 2. A weaker 

conjecture: the existence of compact Hausdorff non-separable spaces 

with two open sets implies the existence of Souslin spaces, i.ec con

tradicts the Souslin hypothesis. 3. The following conjecture seems to 
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be weaker than the preceding one: the existence of compact Hausdorff 

non-separable spaces with two open sets contradicts the Devlin s hypo

thesis from [1] : a compact Hausdorff space in which any countable 

union of nowhere dense subsets is again nowhere dense cannot be the 

union of -K-. nowhere dense subsets. To prove that conjecture it would 

be sufficient to check, in view of (5), the assumptions of Devlin s hy

pothesis for our spaces, for instance that nowhere dense subspaces are 

separable. Note that the Devlin's hypothesis implies the Souslin hypo

thesis, as the last one can be stated as follows (cf. Papic E4 J ) : an 

ordered space with the Souslin property cannot be the union of an in

creasing sequence of X-, nowhere dense subsets. 

We shall sketch the way to the results announced above. The full 

proofs will be published in Colloquium Mathematicum. 

Let X be a compact Hausdorff (infinite) space with two open 

sets. One of these sets is compact, being homeomorphic to X . The second 

one is non-compact, being homeomorphic to each of the subspaces X - Cx}; 

this follows from the fact that X does not have isolated points, X 

being infinite. As in the metric case, X is totally disconnected; the 

proof of this fact given in Zl] remains valid, because the known Moore 

theorem on the existence in each non-degenerate metric continuum of at 

least two non-cutpoints, used in that proof, is valid for Hausdorff con

tinue, too. 

The following simple 6bservation is the key for obtaining the re

maining properties: if U 

U * U-ĵ u U2 \J ..., where 1^ 

empty. From this we get immediately that if F is a closed non-open 

subset of X , then there exists a countable base around F consisting 

of closed-open subsets (a more detailed version of (3)); in particular, 

X is first countable. We get as a corollary that X has the Souslin 

property hereditarily; for this way of getting the last property, di

rectly from the preceding one, the author is indebted to a comment by 

Professor I. Juh^sz during the Symposium. 

If X is not separable, then each non-empty closed-open subset 

of X is not separable, being homeomorphic to X . Since the closed-

open subsets form a base, each separable subspace of X is nowhere 

dense. The main result, a more detailed version of (5), is the following 

Theorem. If X is a compact Hausdorff non-separable space with 

two open sets, then X -» LJ { F^ : oo-ccO^J , where Y(JC are closed 

separable subsets of X such that F^ is a nowhere dense subset of 

F^ , if oC^/i. 
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The proof consists of an inductive construction of the sets F^ , 
using the properties of X proved before, mainly the property (3). The 
construction resembles known from a long time constructions on Souslin 
lines (see T2] f p. 13), as well as more recent ones leading to esti
mations of cardinalities of spaces as in the papers by Ponomarev f6Jf 
Pol C5J and Sapirovskii CBl . 
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