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ON NORMALITY OF THE PRODUCT OF TWO SPACES 

M. ATSUJI 

Tokyo 

Let X be a T space, Y a topological space, and p an accumula

tion point in X. We define an accumulation degree of p by 

a(p) = min {|A|; p e A ~ {p} }, 

where |A| means the cardianl of the set A. 

u)(m) is the initial ordinal of an infinite cardinal m, and we 

define a property B*(m) of Y: For any decreasing closed family 

{F
D
 c Y; 3ea)(m)} with r\ FD = cf>, there exists an open family 
p p 

{G
g
C Y; 3eo)(m)} such that F

g
 C G

g
 for each Bea)(m) and r\ G 7 

= $ . The property B*( X
D
) is nothing but the countable paracompact-

ness([2]). A similar notion is defined by Zenor[5]: A space is said 

to have property B if for any well-ordered monotone decreasing family 

{H ; aeA} of closed sets with no common part, there is a monotone 

decreasing family of domains {D ; aeA) such that H C D for each & J
 a

5
 a a 

a in A and {cl(D ); aeA} has no common part. (Yasui[4] defines a 

weak B-property which is obtained by removing the monotone decreasing-

ness of the family of domains in Zenor
f
s property B, and shows that 

Yasui's property is strictly weaker than Zenor*s one). Zenor shows 

in [5] that the paracompactness. implies the property B. Since the 

property B follows the property B*(m) for any m, a paracompact space 

has the property B*(m) for every m. 

Let {E
x
 C Y; xeZ C X} be any family of subsets of Y with index 

set in X, and let p a point of X, then we write 

lim sup E = ^~N w E 3 
p X

 UeN(p) xeU
 x 

where N(p) is the neighborhood system of p. Now we have 

Proposition. Suppose X x Y is normal. Then for any closed 

family {E
v
 c Y;. xeZ c X} with lim sup E = ' <J> for a point p of X, 
x p x 

there exists an open family ID C Y; xeZ
f
 C X} satisfying Z c Z', 

E C D for xeZ, and lim sup D~ = <J> . 
x x

 9
 p ^ x 

Proof. Let us put 

E = W (x, E ) , 
xєZ

 X 
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then E and (p, Y) are disjoint closed subsets of X x Y because 

E[p] = limpsup Ex = $ (cf. [1]), 

where E[p] is the slice of E at p. Therefore there exist disjoint 

open sets G, and G? containing E and (p, Y) respectively. Putting 

D = G,[x] for each x e prv G, = Z
f, we get the desired family 

XX A ± 
{D ; xeZ'}. In fact, for an arbitrary point y of Y, there exist 
neighborhoods U and V of p and y respectively such that U x V c &, 

1 _ 
V and D are disjoint for every x in U, so that y £ ~~~ZJ D~ = 

x xeU x 

v_y D ; since y is arbitrary, we have 
xeU x  

/~N S-̂  D~ = <j>. 
UeN(p) xeU X 

Corollary 1. Suppose X contains an accumulation point p with 

a(p) = m. If X x Y is normal, then Y has the property B*(m). 

Proof. p is an accumulation point of a subset A of X with ]A| 

= m; we may assume p does not belong to A. Let {xft; 3ê (ni)} be 

a well-ordering of A, and let {Fg C Y; 3eco(m)} any decreasing 

closed family with no common part. Let us write F = F , then we 
Xg p 

have l im sup F = <f>. In f a c t , p 

P xQ 
/-~\ w F y = / -N F Y = r \ F = (f), 

UeN(p) x^eU 3 UeN(p) X3TJ 3eu)(m) p 

where 3n is the least indeoc of xg belonging to U; the second 

equality is verified as follows: q £ r*\ FR implies the 
3ew(m) p 

existence of Fft which does not include q, and so q £ F^ for all 
Po Y 

Y__i3o. Since |{x ; Y<3o}| < m, p does not belong to {x ; Y<3O}, 

namely {x ; Y<30} is disjoint from*some neighborhood Uo of p, so 

that 3TT >30,
 a n d q is not in F - and not in f~\ F„ 

xB U o U£N(p) \ 
Therefore, by Proposition, there exists an open family {G c Y; 

xeZf c X} such that A C Z', F C G
v for xceA, and lim sup G~ 

X Q x« p p X 

= <)>. Since p is an accumulation point of A, we have 

^ G ~ = *; 
x^eA x3 
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in fact, suppose <^\ G includes a point y, then, since an 
x^eA X3 

arbitrary neighborhood U of p includes some xR, y belongs to \J G~ 
xeU 

and to /"""N \j G~ = §, the contradiction. 
UeN(p) xeU X 

Corollary 2 (Dowker). Suppose X includes a sequence of points 

with an accumulation point in X. If X x Y is normal, then Y is 

countably paracompact. 

About a month after this Prague Symposium the author received a 

pre-print[3] from Prof. M.Rudin in which the definition and the 

existence of a K-Dowker space were given for an infinite cardinal K. 

A K-Dowker space is a normal Tp space which has a decreasing closed 

family {^* A<K} such that r\ D^ = <J) and, if {U, ; A<K} is an 

open family with D, C U, for each A, then r\ U, ^ cj>. Since a K-

Dowker space of K = „<̂  , x does not have the property B*(m), we 

can immediately conclude by Corollary 1 above that the following 

Morita's conjecture is true. 

Corollary 3 (Atsuji-Rudin). If X x Y is normal for any normal 

space Y, then X is a discrete space. 
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