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MONOTONE MAPPINGS AND CELLULARITY OF ORDERED SETS
B. KUREPA

Beograd

0. Notations and terminology.

(0-1) For any ordered set (0, < ) and any x we put O(.,x):=
={ylyeo0, y<£x3}, 0(x,.):={ylye 0,x <y} :=(x,. O,O[x, D:i={ylye0,x<y};
Ofx1:={ylye0,y€xVyzx].

(0-2) (T,<) is a roamified table or a tree iff for every =x€T,
(r(.,x),<) 1is well-ordered. For every ordinal o¢ , RD"I‘:zfxl'xeT ,
(r(.,x), <) has the order type ¢} ; 4T (or #(T,<)) is the first
ordinel o¢ such that R T=#. (T,£) 4is a remified sequence iff 4 T[x]=
erT for every xeT .

(0-3) If in a subset S of (0,<) the comparability relation
is transitive, S 1is called a D-suhset of (0,=2). (0,=) 1is D-ref-
lexive iff (0,%) contains a D-subset, Od , of power (Ol .

(0-4) An increasing mapping f of (0,%) is almost strictly
increasing iff for every xcO having at least one successor in (0, <)
there is some ye<O such that x<y end fx «fy .

(0-5) Since the separability number s8C , the cellularity number
¢C 1is the same for C and its Dedekind completion we shall assume, if
not stated otherwise, that (C,<) is without gaps.

(0-6) For any system S of intervals of (C,<) we denote by
eS the system of all endpoints of members of S .

1. Theorem. Let T be a ramified sequence such that cf ¢ T= C‘)oa-l;
if there is an almost strictly increasing mepping f of T into an .)GM—
-separable chain C , then T 1is D-reflexive (for o« =0, v . Théoréme
fondamental in . Kurepa (1937) p. 1035 and (1941) p. 493).

Proof. Let us consider the critical case (cf. P. Kurepa (1935)
p. 108/9, §3) that T is a sequence of rank ¢ with ¥y = <)y, &nd that
every level R T (x<¢T) is <X . let f be any almost strictly
increasing mapping of T into an K, -separable chain C ; let W be a
subset of cardinality J\’“ and everywhere dense on (C,<) . Let

(1-1) g:T—T be a mepping of T into itself such that

(1-2) aeT=>a<¢gla) and f(a)< f(gl(a)). For any weW 1let

(1-3) T™:={alacT, £(a)<w<f(ggla))}.

(1-4) Lemme. UJ '1‘":‘1‘, (weW) .
w
Proof. let a ¢ T; then C(a,gg(a)) is an open interval of C ;
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this interval is non-empty (e.g. it contains the point £f(a) ; therefore
the non-empty open interval C(a,gg(a)) of C contains at least one
point w of W ; by definition of T , we have acT .

(1=5) ‘Le;mma. There exists some neW such that lTnlxlTl, and
(1-5-1) f(a)%n <f(ggla)) for every acT" .,

The lemma is the consequence of Lemme (1-4), At first, the rela-
tion (1-5-1) is true by definition of i ; consequently, if Lemma (1=-5)
was false, this would meen that JT™I<|T] (weW) what joint to
%'_-iTwIET (implied by Lemma (1-4)) would mean that [W|=ef|TI= )N .,
-contradicting the assumption that [Wl= Qfé.

(1~6) Lemma. T contains an antichain A of cardinality cfIT!
(= MMM) .

Proof. Again, we can assume that ™ 1is a nice ramified sequence
of hight ¢ t= ¢ T'= cs end such thet |R,TVIC¥, (¢ <ygT™) .
Let T be the least initial ordinal cofinal to yT:= g o Let us define
8 ¢ -gequence

(1-6-1) & ,87,.+4,84,... (1< T ) of pairwise distinct points
of T% such thet the numbers
(1-6-2) oy, (3; definedby a;€R, ™, g(ai)éRﬂiTn
satisfy

(1-6=3) 00 <00 Caeedy Luve —> 4 T (1< D)

(1-6-4) Ry<eey, U<T) ., :
The existence of (1-6-1) satisfying (1-6-2), (1-6-3) is obvious by in-
duction srgument, becsuse T was assumed to be a nice sequence. Fur-
ther, the numbers (1-6-~3) setisfy the following relations:

{1-6-5) xi<ﬂi<oo (1<) .
Let us prove that the points

(1-6-6) g(ao), gla;),..., glay) (1<)
constitute an antichain in T , i.e. that

(1-6-7) 1<J<<T = g(ai)ll 8(921) .
At first, in virtue of (1-6-5) we infer that /[ i< oéi+1é ocj< 2.,
thus 3; < /3 ; consequently, 7 [&(a )=g(a;)]. On the other hand, if
8(H1)‘<g(aj) , then since also aj<ggad) (v.(1-2)) these relations
would imply thot the points a5, g(ai) as predecessors of the same point
gla, )€ T , would be comparable: either

(1-6-8) a <gla;) or

(1-6-9) g?ai)<a‘j . The case (1-6-8) does not hold, because (1-6-8)
would imply °‘3 é[Ji , contrarily to I <ocj « On the other side if
(1-6-9) holds, then

f(g(ai))éf(aj) ; this relation joint to f(aj)én<f(gz(aj))

i+l
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(cf. the definition of T") would yield

f(g(ai)) $n , contrarily to the assumption f(ai)é n <f(32(ai))
for every ordinal 1< < . Thus we established an antichain <T of car-
dinality 1T (¢TI,

(1-7-4) Lemma. T" 1is D-reflexive. Since, by hypothesis
J’[a")l‘n ={TD for every acT , 1t is sufficient to consider any
T -sequence of cardinals ky (1<) such that > kilenlle] and
for any 1< T to consider in the upper cone T°[g ai),.) a chain Ly
of cardinality = k (the existence of Li is obvious because
(Tnfajsdan (aeT) , ™ being a remified sequence). Then the unien
of the sets Li is the requested D-subset of T of the cerdinality
JTl. Q.E.D.

2. Theorem. Any remified decreasing table (T,D) of intervals of
(C,<) such that eT = C satisfies /Tl= s(C, <) ., (cf.D. Kurepa (1935)
p. 120 L. 3; elso J. Novdk (1952)b Th. 1l.).

Proof. One has
(2-1) |eTi=|T|= supiLo‘,TlRiTl-lTl: sup{mT, |4 TI}, where nT:=
= supg leTI, (£<yT) . (Cf. D. Kurepa (1935) p. 74 § 10.)
On the other hand, eT being everywhere dense on (C,<) one has eT =
=sC .Consequently, |T|=aC and in virtue of (2-1):
supimT, /¢ T/} =sC . In other words,
(2-2) eT = (C,%) dimplies sup{mT,!p TI}=sC .
Now, we have the following two lemmas:
(2-3) Lemma. s(C,<) =mT for every T

(2-4) Lemma. s(C,<) =(gT| for every T .

The lemmas (2-3), (2-4) imply

(2-5) s(C,<)=sup{mT, | ¢TI} for every T , in particular for
every T satisfying eT = C . The relations (2-2), (2-5) yield

(2-6) s(C,%) = sup{mT, | T!} for every (T,D) such that eT = C;
therefore also 8(C,<) =|T) for every (T,D) satisfying eT = C .
Theorem 2 is completely proved.

(2-7) We have still to prove lemmas (2-3), (2-4). The first ome
being obvious, let us prove the second one. Now, Lemma (2-4) is obvious
if mT> lyT| or if mT =lgyT| and ¢ T 4is not an initial ordinal num-
ber. Therefore let us consider the following case

(2-8) mT =¥, , ¢yT=c,. '

(2-9) One hes not s(C,&)<(yT]|.

In opposite case, there would be a subset M of (C,%) such that M = C,
IMK\}-&; now, let x€M ; there would be an index i(x)< ¢ T and some
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X such that

(2-10) xeXeRi(x)T (in the opposite case, there would be some
XJéR T such that xe X, for every Jj< what would imply that
(x,) <o would be a strictly decreasing <, -sequence of intervals
of (C,£) , in contradiction with the assumption s(C,<) < ¥ ).

The relation (2-10) being established, we have the following two cases:

' (2-11) First case: ¢ T(= &J,) 1is regular. Since by hypothesis
IMI <} 8snd 1(X)<w, for every xe&M , then the ordinal /3 := sup 1(x)
(x €M) would be <4 - impossibility, because no interval IéRﬂT con-
tains any point of M , which is supposed to be everywhere dense in
(c,s) .

(2-12) Second case: ¢ T(=cJ,) 1is singular. Thisc case is not
possible either because by assumption IMK}‘& there would be some ordi-
nal i such that |MI<|i] and 1< 4@, ; therefore, for any BER,T
the system (.,B)y of all members u of T such that u>B would be
@ strictly decreasing 1i-sequence of intervals of (C,<) , in contra-
diction with i7>s(C,<) .

Consequently, the relation (2-9) is not possible which proves
that Lemma (2-4) is true.

3. Theorem. Every totally ordered infinite set (C,<) satisfies
s(C, <) = supy!T!,T being a ramified table of decreasing non overlapp-
ing subintervals of (C,<) . (Cf. P. Kurepa (1935) p. 120 § 12. C. 3;
also J. Novék (1952) b Th. 1.)

Proof. In order to prove Theorem 3 let us prove the following

(3-1) Lemma. If (C,<) 1is any ordered chain and D any disjoint
system of non-void intervals, there is a disjoint system D" of disjoint
intervals of (C,<) such that p*>D -and LJD+ is everywhere dense
in (C,<) .

The proof is obvious: if B:= (/D 1is everywhere dense, we set
D':=D . If B 1s not everywhere dense, we have the complement K(D):=
C\B and the partition p(K) of K(D) into meximal convex subsets
X of (C,<) satisfying int X ¥ g . For every Xe pK(D) , let & (X)
be any partition of X into disjoint non empty intervals; then we
define

D :eD L Um(X) (Xep K(D)) .

One proves readily that D' satisfies the conditions in (3-1).

(3-2) Let us now prove Theorem 3: T being as in 3 let us deter-
mine a table T of intervals of (C, <) such that T ST and the set
e('T+) of end points of members of T* 1is everywhere dense in (c,=) .
To start with, let TzkilRiT (1 <¢T) be the disjoint partition of
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(T, D) into rows or levels of (T, D) . We put T;)::(ROT)* ,
TP = (RyTU(TI R T (cf. (3-1)). Let 0<J< ¢ T end assume that
the ramified table

(3-3) ki/Ti (1<93)
is defined and that 4 (3-3) = J§ , Ri((3-3)) =T} (1<J) . Let us de-
fine '1‘3 as well, If j is a limit ordinal, we define T) to consist
of all members of T, end of all sets of the form int Nx <y,
where xogxla... DXiD... is a strictly decreasing sequence of con-
vex parts of (C,%«) such that X;&Tj (i< j) and for some 1<j one
has X;€ TINT, . If J7< 3 , we define

T:].:s T u(Ts\T .

(3-4) Let us define V:= ‘1{1‘1 1<y
Then obviously, VOT .

(3-5) 1If the set eV of endpoints of V 1is everywhere dense,
then |eV/= s(C,<) and since ieVi=|V|>|T|, the theorem would be proved.
If the set eV 1is not everywhere dense in (C,%<) we extend V and defi-
ne T+ as follows:

Let us consider the set MV of all maximal chains of (V,D) ; for every
XeMV let i(X):=intMNy (y€X) . Then i(X) 1is a convex subset of
(C,<) ; for every i(X) having at least 2 points, let +t(iX) be a
complete ramified table of subintervals of i(X) (thus in particular
et(1(X)) 1is everywhere dense in 1i(X)) ; finally, we define

(3-6) T := Vo ) tam) , (xew).

Then obviously, T 5V>5T and eT'= (c,=) = s(Cc,<) .

(3-7) Corollary. Every ordered chain (C,<) satisfies

(3-7-1)  s(C,<=) = suppfnT, [y T}, (cf.(2-1)).

(3-7-2)  s(C,<) = supg{p T, | 4TI},

(3-7-3) s(C,£) = sup{ c(C,=), supy (¢TI},
T running over the system of all ramified decreasing tables of convex
subsets of (C,<) , and where for any partially ordered set (E,<)
we put ps(E,’:):t supf/I], I running through the system of all anti-
chains (independent or free sets) C (E, <) (cf. D. Kurepa (1937) p.
1196/7 relation fondamentale; v. also (1939) p. 62, (1959) p. 205);
s in psE is the initial chaeracter of slavic words svobodno or slobodno
(=free).

"

4. Theorem. Let oc be any ordinal number, and (C,<) be any
ordered chain of celullarity Jﬁc , 1.6, c(C,<) = 3§, _; then

(4-1) s8(C,<)=c(C,<€)<> for every remified table (T,D) of
intervals of (C,<) there is an isotone mapping i: T—>I( %) and

-1
an ordinal 5<& ., such that for every xciT one has ¢, {x}443.
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Proof.

(4-2) Necessity. Since, by hypothesis (4-1);, s(C,<) = ¥ _,
one has necessarily ¢ (T,D)<c/ . (ef. (3-7)); therefore, it is
sufficient to consider the constant mapping i(x) = O for every xeT
to see that one has an isotone mapping of (T, 2) into I(</,) with
properties requested in (4-1)2. _ )

(4-3) Sufficiency. Let now (T, D) be any ramified table of
intervals of (C,<) such that eT 1is everywhere dense in (C,<) ;
in virtue of Theorem 2 we have

(4-4) s(C,<) =ITI .,

(4-5) Again, |T|= sup{mT, [¢T/} ; therefore, if mT =|yT/,
then the last supremum equals mT, and consequently | T/= mT ; therefore
(4-4) yields s(C,<)=amT ; this relation joint to 8(C,<)=c(C,<)=K =
= nT would imply the requested equality (4—1)1.Therefore let us still

consider the case that
" (4-6) mT< |yTl.
We claim that

(4-7) [TI= ¥, (=c(C, <)) , which jointly to (4-4) implies the
requested equality (4-1)1. In the opposite case, either ITI<¥_ or
ITI> ¥ . The relation |TI<¥_ is not possible, because one has ¥ =
= ¢c(C,<) = 8(C,%) =IT! , and thus Xxl_—lT!. Consequently, there would
be

(4-8) ITI> ¥, and by (4-6)

(4-9) J]T 26 4 -

The relation § T Je+l is impossible (in the opposite case, any
xERUoz+1 (T,2) would yield the corresponding cJ_, /¢ +] —Sequence of
strictly decreasing intervals of (C,<) , contradicting the condition
e(C,<) = ¥ ) . Consequently, necessarily g T=a ., andevery
chain in (T,D) 1is exp‘. :

(4-10). Now, let us consider the mapping i &and the ordinal /3
occuring in (4-1),. Since
T = Ui 3, (y 4T € I( & )) L TR S R AL
we infer thet some yciT satisfies |i ~[y}|= #4;“1 (=IT)) .

The set (X, >) , where X:= i " {y} , would be a subtree of the tree
(T, D) of cardinality x +1 @ond of arenk X <0, where [B<l
thus lgX I<IX| ; now we have the following

e+l

(4-11) Lemma. Every infinite tree X satisfying [|Xi>IgX[| is
D -reflexive. (v. . Kurepa (1935) p. 108/9 § 3, Th. 2). Therefore, X
would contain a D -subset Y of cardinality "to(, +1 5 the disjoint
partition Y =U¥[y,.). (yeR¥) would be in contradiction with the
fect that |RY!¢c(C,£) = ¥  end I X, ., 12X, every Y(y,.)




(ye ¥) being

Kurepa, duro:

Kurepa, Buro:
Kurepa, duro:
Kurepa, ®uro:

Kurepa, duro:

Kurepe, Puro:

Kurepa, duro:
Kurepa, duro:
Kurepa, Puro:

Novédk, Josef:

Novék, Josef:

Kurepa, duro

Laze Simica 7
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a chain in (Y, D) .
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