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On generalized ordered p- and M-spaces. 

J.M. van Wouwe 

Amsterdam 

The class of all GO-spaces has "been extensively studied by a.o. D.J. Lutzer [5] and 

M.J. Faber [3], and most of the material in the first section can be found there. 

They characterized several properties, like metrizability, perfect normality and 

paracompactness in terms of the order-structure. We give a characterization of 

generalized ordered p- and M-spaces by means of the metrizability of certain 

quotient-spaces. 

The first section contains preliminary definitions and results, the second section 

contains the main results concerning p- and M-spaces. No elaborate proofs have 

been inc luded . 

1. Preliminaries. 

Suppose (X,<) is a linearly ordered set. 

If p,q belong to X, then by the closed interval [p,q] we mean the set 

{x 6 X | p < x < q}, and by the open interval (p,q) the set {x e X | p < x < q}. 

Hal f-line s) like {x e X | x > p} are denoted by [p,->) etc. 

A subset C of X is called convex if for every pair of points p,q from C the 

interval [p,q] is contained in C. Every subset B of X decomposes into a collection 

of maximal convex subsets of X, called the convexity-components of B (in X). 

A point p is said to be an endpoint of a convex set C in X, if p belongs to C and 

C\{p} is convex. 

Whenever (X,<) is a linearly ordered set, the order-topology on X, with the open 

half-lines as subbase, is denoted by X(<) or simply by X if there is no danger of 

confusion. 

(X,<,X(<)) is called a linearly ordered topological space or LOTS. 

The triple (X,<,T) is called a generalized ordered topological space or GO~space if 

X is a set, < a linear order on it, and T a topology for X such that 

(i) X(<) c T 

(ii) T has a base consisting of convex sets. 

Clearly every subspace of a LOTS is a GO-space. The converse is also true: 

if (X,<,T) is a GO-space, and 

X* = {(x ,n) e X x 2 | D > 0 i f («-,x] e T \X} U 

u {(x ,n) e X x z [ n < 0 i f £x,-0 e T \ X } U 

u {(x ,n) € X x 2 | n = 0 } , 
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then X is homeomorphic to the subspace X x {0} of the LOTS (X*,-<, A(-<)), where < 

is the lexicographic order on X*. 

Let X = (X,<,T) be a GO-space. 

An ordered pair (A,B) of subsets of X, such that 

(i) X = A u B 

(ii) a < b for all a e A, b e B 

(iii) A,B e T 

is called a gap : if A has no right and B has no left endpoint 

a left pseudogap : if A (*(J>) has no right, and B has a left endpoint 

a right pseudogap: if A has a right, and B (*<f>) has no left endpoint. 

Clearly, pseudogaps do not occur in a LOTS. 

If (X,<,X(<)) is a LOTS, and £, = (A,B) is a gap in X, then we may regard £ ..as a 

"virtual element" added to X, satisfying a < £ < b for all a e A, b e B. If we add 

all these gaps to X, and give the resulting set the ordertopology, we obtain the 

Dedekind-compaotification X of X [-+]. If X = (X,<,T) is a GO-space, we think X 

embedded in X*, and define the Dedekind-compactification X of X as the closure of X 
.f 

in the Dedekind-compactification of X*. Then X is an ordered Hausdorff-compactifi-

cation of X. It can also be obtained by "adding" to X all gaps and pseudogaps, as 

described above. 

If X and Y are topological spaces such that X c Y, then a pluming for X in Y is a 

sequence (U ) „ of coverings of X by open sets in Y, such that fLSt(xM ) c X 
n n=1 ° 11s-1 n 

for every x e X. 

A completely regular space X is a p-space if it has a pluming in its Cech-Stone-

compactification, or equivalently, in any of its Hausdorff-compactifications (see 

[1]). Hence, a GO-space X is-a p-space iff it has a pluming in its Dedekind-compac

tification X . 

A space X is said to be a uAspace [2] if there exists a sequence (I/ ) * of open 

covers of X with property (M) below: 

(M) : If there exists x e X such that x^ e St(xQ,l/ ) (n = 1,2,...) 

then the sequence (x ) =1 has a clusterpomt. 

A space X is a M-space [6] if it admits a normal sequence of open covers, satisfying 

property (M). 

2. p- and M-spaces. 

In the sequel, X will always denote a GO-space (X,<,T). 

DEFINITION If C is a convex subset of X, and £ = (A,B) is a (pseudo)gap in X, then 

C covers £ if C n A ;- <\> and C n B * cj>. 
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DEFINITION Every GO-space X, as a subset of X+J decomposes into convexity-compo

nents which are closed in X. Clearly the convexity-components of X in X are maximal 

convex subsets of X that do not cover any (pseudo)gap of X. If D is the collection 

of all these convexity-components 3 then the deconrpositionspace X/D is called gX3 and 

the identification-map is denoted by g : X ->• gX. 

PROPOSITION. If 6 is the identification-topology on gX3 and < is the natural order on 

gXj inherited from X, then gX = (gX,<j6) is a GO-space. Moreover3 the map g : X -> gX 

is closed and order-preserving. 

The main result about p-spaces is the following 

THEOREM X is a p-space <-> gX is metrizable. Q 

COROLLARY 1: X is a p-space <-> X* is a p-space. 

PROOF. gX is homeomorphic to g(X*). Q 

COROLLARY 2: Suppose X is a GO-space such that there is a (pseudo)gap between any 

two points of X. Then X is a p-space if and only if it is metrizable. 

PROOF. The fact that there is a (pseudo)gap "between any two points of X 

implies that gX is homeomorphic to X. D 

COROLLARY 3: Suppose X is a LOTS with a a-discrete dense subset. Then X is a p-space. 

PROOF. If D is a a-discrete, dense subset of X, then g[D], together with 

possible endpoints of gX, is a a-discrete, dense subset of gX, containing all y e gX 

such that [y,-0 or (+-9y] is an open subset of gX. Hence gX is metrizable by 

[3: theorem 3.1]. D 

Generalized ordered M-spaces can be characterized in a way similar to that of 

p-spaces. We need some definitions, and the following theorem. 

THEOREM. X is a uAspace -* X is a Vl-space. D 

DEFINITION. Suppose ? = (A,B) is a (pseudo)gap in X. Then £ is called countable if 

some strictly increasing sequence is cofinal in A, or some strictly decreasing 

sequence is coinitial in B. 

PROPOSITION. X is countably compact ** X has no countable (pseudo)gaps. D 

c + " . . 
DEFINITION. Let X be the subspace of X containing all elements of X, and all 
countable (pseudo)gaps of X. For every (pseudo)gap £ = (A-,Bj /from X \X add the set 

\ c c . . . 

CSJ**) of X to the sub space-topology of X if no strictly increasing sequence is 

cofinal in Ar, and the set («-,?] if no strictly decreasing sequence is coinitial in 

Bp. With the resulting topology, and relative order, X becomes a generalized 

ordered countably-compactification of X in the sense of Morita [7-V 
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DEFINITION. Let C be the decomposition of X into maximal convex sets that do not 

cover countable (pseudo)gaps3 i.e. C consists of the convexity-components of X as a 

subset of X . Then the decomposition-space X\C is denoted by cX and the identifica

tion map by c : X -* cX. 

PROPOSITION. If Y is the identification-topology on QX, and < is the natural order 

on cX inherited from X> then cX = (CX,<,Y) is a GO-space, and the map c : X -> cX 

is closed and orderpreserving. D 

THEOREM. The following properties are equivalent: 

(i) X is an M-space 

(ii) X has a pluming in X 

(Hi) cX is metrizable. D 

COROLLARY. X is a -p-spaoe => X is an M-space. 

PROOF. The map h = c°g : gX -> cX is closed, and hence preserves stratiflabi

lity. Since stratiflability is equivalent to metrizability for GO-spaces, this 

implies that cX is metrizable if gX is. ["] 

The following example shows that in the class of all GO-spaces, p-spaces and M-spa-

ces do not coincide: 

EXAMPLE. Let 0). be the set of all countable ordinals, with the usual order, and 

GO* the same set with reversed order. Replace in 0). every non-limit ordinal by a copy 

of 03* + a)-] ,and order the resulting set X lexicographically by-<. 

Then the LOTS X = (X,^,A('< )) is an M-space since X has no countable gaps, so 

cX = {0} (in fact X is countably compact); but X is not a p-space since gX is 

homeomorphic to u).. and hence not metrizable. D 
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