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MAXIMAL LINKED SYSTEMS IN TOPOLOGY 

P.C. BAAYEN 

Amsterdam 

1. Maximal linked systems of closed sets 

Ten years ago J. DE GROOT introduced maximal linked systems in 

topology. 

Let X be any set. A collection L c P(X) is linked if L. n L„ f 0 for 

all L., L? e L. If also S c P(X), then L is a maximal linked system in S 

(shortly, an S-mls) if L is a linked subsystem of S not properly contained 

in any other linked subsystem of S. We will write IL (X,S) for the set of all 

maximal linked subsystems of S. 

DE GROOT was concerned with the following situation: X is a Tt-space, 

S is a subbase for the closed sets of X, and IL (X,S) is topologized by 

taking 

S+ := {S+ : S e S}, 

with 

S := {L : S £ L e I. (X,S)} - (SeS), 

as a subbase for its closed sets. The space obtained in this way he denoted 

by A^ (X); we will call it A(X,S). 

The following notational conventions will simplify our presentation. 

If X is a set and S c P(X), then [X,S] - and [X,S] will denote the topo

logical space with X as the underlying set and S as a subbase for the closed 

sets (for the open sets, respectively). Thus 

X(X,S) -= [1L(X,S), S +] c l. 

In comparison, let W (X,S) stand for the collection of all maximal centered 

subsystems of S; if S e S, let 
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:= {F : S e 1F (X.S)} 

S := {S : S e S}. 

u)(X,S) := [F (X,S), S ] c l 

is the WALLMAN-type compactification of X = [X,S] relative to the closed 

subbase S. In the special case where S is the collection of all closed sub

sets of X = [X,S] . , we will omit reference to it and we will just write 

A(X) and w(X). 

Just as all WALLMAN-spaces o)(X,S) are compact, all spaces A(X,S) are 

compact too: they are even supercompact, in the following sense. 

DEFINITION. A closed subbase S for a topological space X is called binary 

if every linked subsystem of S is fixed. A topological space X is called 

supercompact if it has a binary closed subbase. 

If S is a binary closed subbase for X, then S := {X\S : SeS} is an 

open subbase for X with the property that every open S -cover had a 2-

element subcover (let us call such an open subbase open-binary). From 

ALEXANDERS lemma it is obvious that every supercompact space is compact. 

DE GROOT called the space. A(X,S) the superextension of X relative S 

(the superextension of X being the space A(X)). However, A(X,S) rarely is 

an extension of X, in the sense that (a copy of) X is dense in A(X,S) 

(cf. [17] section 7). But A(X,S) is a superspace of X if X is a T -space 

and S a T.-subbase, in the following sense. 

DEFINITION. A closed subbase S for a topological space X is called a 

T -subbase it (VxeX) (VSeS) (x̂ S-*(3TeS) (xeTcX\S)) ; 

weakly normal subbase if (VS ,S eS)(S nS2 = 0 => there are 

finitely many T.,...,T e S such that 
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each T.. meets at most one of S. and S? 

and T.u.. .uT = X); 1 n 

normal subbase if (VS. ,S2eS) (S.nS2=0=>(3T. ,T2eS) (T.uT2=X and 

T1nS1=T2nS2=0)). 

Introduce the following map i , defined on X (and depending on S): 

t(x) = {S : x € S e S}. 

Then the following holds. 

THEOREM J_. If X is a T.-space and S a T -subbase for the closed sets of X, 

then i is a topological embedding of X in A(X,S). 

Let 3(X,S) denote the closure of i[X] in A(X,S); under the assumptions 

of theorem 1, 8(X,S) is a compactification of X. In [14] and in later papers 

these compactifications were called GA-compactifications. They were used 

by DE GROOT and AARTS [11] to obtain their well-known subbase characteri

zation of complete regularity. 

THEOREM 2. Let X = [X,S] - be a T -space, with S a weakly normal T -subbase 

for the closed sets. Then $(X,S) is a Hausdorff compactification of X; it is 

a quotient of the WALLMAN-type oompaotifioation w(X,S) {which under the 

given assumptions need not be T ?). 

COROLLARY. A T.-space X is "completely regular if and only if it has a weakly 

normal T.-subbase for 'the closed sets. 

Recently VAN MILL [18] proved that every Hausdorff compactification of 

a locally compact separable space is (equivalent to) a GA-compactification. 

Whether this also holds for general spaces is an open problem that seems 

far from being solved. 

Many nice results on maximal linked systems of closed sets, and a good 

bibliography up to 1972, are to be found in VERBEEKfs monograph [26]. A 

survey of recent results is under preparation [2], Let me just mention a 
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very few that to me seem important and beautiful. 

STROK and SZYMANSKI proved that every compact metric space is super-

compact [24]. Other classes of supercompact spaces are: all compact orderable 

spaces,, all compact treelike spaces ([5],[17]), all compact lattice spaces 

[23],[21]. As super compactness is preserved under the formation of products, 

there are many supercompact spaces indeed. However, since recently it is 

known also that there are many nOn-supercompact compact Hausdorff spaces. 

First, BELL [4] showed that if X is not pseudocompaot then $X is not super-

compact; hence e.g. $]N is not supercompact. Next VAN DOUWEN and VAN MILL 

[7] considerably strengthened this result; they proved: 

THEOREM 3. Let X be a T«- space which is a continuous image of a super-

compact T~ space. If K is any oountably infinite subset of X̂  then 

(a) at least one cluster point of K is the limit of a non-trivial conver

gent sequence in X {not necessarily in K), and 

(b) at most oountably many cluster points of K are not the limit of some 

non-trivial convergent sequence in X. 

As a consequence, no infinite extremely disconnected space or, more general

ly, no infinite Hausdorff F-space can be (a continuous image of) a super-

compact space. 

The result we are going to mention next solves a long-standing con

jecture of DE GROOT; it is simple enough to formulate but the proof is 

highly technical and very ingenious: the superextension of the unit segment 

is the Bilbert cube (VAN MILL [ 1 9 ] ) . 

Another recent result about superextensions, by VAN DE VEL [25], states 

that the superextension of a connected normal T -space always has the fixed 

point property. 

Just before his untimely death DE GROOT was working on an interesting 

connection between supercompact spaces and (infinite) graphs (see [10] and 

[6]). His ideas in this direction were taken up and succesfully extended by 

A. SCHRIJVER [23], [21]). 

2. Maximal linked systems of open sets 

In this section we assume throughout that .S is an open subbase for a 

Hausdorff space X. 
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DEFINITION. A linked system L of subsets of X is convergent if 

| n {L : L e 1} | = 1; 

if this is the case, and n {L : L e L} = {p}, then p is called the limit of 

L; notation: p - lim L. 

A linked system of closed sets converges if and only if it is a con

vergent centered system; therefore the theory of convergent maximal linked 

systems of closed sets is contained in the theory of fixed maximal centered 

systems. For mlsfs of open sets the situation turns out to be radically 

different. 

We need some additional notation. Suppose X = [X,S] ; then we put 

A(X,S): « [X, (X,S),S+] 
op 

and 

ft(X,S): - [¥ (X,S),SX]Qp; 

the subbase of A(X,S) consisting of all convergent S-mlsfs is denoted 

B(X,S), and the subspace of fi(X,S) consisting of all convergent maximal 

centered S-systems is denoted A(X,S). 

Also, we need some additional properties for subbases. 

DEFINITION. An open subbase S for a space X is called a 

complemented subbase if (VSeS)(3SfeS)(SnSf=0A(VTeS)(Tn(SuSf)^0)). 

Although some of the results which follow are valid in a more general set

ting, we will assume for simplicity1s sake that S is a ring of sets. Hence 

S is an open base, and 

fl(X,S) c X(X,S); A(X,S) c B(X,S). 
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THEOREM 4. Let X = [X,S] be a Ty-space, where S is a ring of sets. 

( i ) A(X,S) is a zero-dimensional T,?-space, with density at most dX + w; 

( i i ) lim: B(X) •> X is a ^-continuous surjection\ 

( i i i ) if in addition S is complemented, then A(X,S) is super compact; in fact, 

A(X,S) is a superextension both of A(X,S) and of B(X,S), 

( iv) if S is complemented and X is compact, then B(X,S) is compact (but in 

general not supercompact); 

(v) if S is complemented, then lim: B(X,S) •+ X is perfect; point-originals 

under lim are even super compact. 

In the special case where S is the collection of all open sets of 

[X,S] , we will suppress S in the notation, writing ft(X), A(X), A(X), 

B(X) etc. In this case A(X) is the absolute of X, and ft(X) is what ILIADIS 

[15] calls the hyperabsolute of X (cf. also [16] and [22]; in case X is 

completely regular, ft(X) is just A($X)). 

THEOREM 5. The following assertions are equivalent in case X is regular: 

( i ) B(X) is extremely disconnected\ 

( i i ) B(X) = A(X); 

( i i i ) lim: B(X) ->• X is a homeomorphism\ 

( iv) X is extremely disconnected\ 

(v) B(X) is an F-space; 

(vi ) B(X) contains no convergent sequences. 

THEOREM 6. Let S be a normal T subbase for the closed sets of X. Then the 

map lim: B(X) -> X has a continuous extension t: A(X) -> X(X,S) such that t is 

perfect and surjective, while in addition t [ft(X)] = $(X,S). if in addition 

S contains all open-and-closed subsets of X, then the described extension t 

is infective (and hence a homeomorphism) if and only if X is extremely dis

connected, 

Tx. now easily follows that B(AX), is homeomorphic to A(X) , and also 

that the spaces A(X), A(3X), A(AX) and A(ftX) are all homeomorphic. In 

addition, AX is homeomorphic to the superextension A(ftX) of the hyperabsolute 

of X, and to the zeroset superextension An(AX) of the absolute of X (where 
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An(Y) stands for the superextension A(Y,Z(Y)). 

As supercompact spaces cannot be extremally disconnected (except if they 

are finite), the space A(X) (with X infinite) is never extremally discon

nected. It is a retract of a space A(D) with D discrete. 

ILIADIS [15] has shown that any irreducible 9-continuous closed sur-

jection f: X -*- Y can be lifted to a homeomorphism ftf: fi(X) -*• ft(Y) such that 

(ftf)[A(X)] c A(Y). We have proved that f can even be lifted to a homeo

morphism Af:' A(X) ->• A(Y) such that (Af) | ft(X) = ftf, and such that always 

(Af)[B(X)] c B(Y). In addition it turns out that (Af)[B(X)] = B(Y) if and 

only if f itself is a homeomorphism. 

Finally we mention - without going into details - that B(X) can be de-

sribed as a maximal pre-image of X under a special kind of mappings. A 

paper on A(X,.S) and B(X,S) and some related spaces spaces, by J. VAN MILL, 

E. WATTEL and the author, is under preparation; it will appear as a report 

of the Mathematical Centre in Amsterdam [3]. 

The results in this section were obtained in pleasant cooperation with 

Jan VAN MILL and Evert WATTEL. 
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