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ON A FACTORIZATION LEMMA AND A CONSTRUCTION OF ABSOLUTE
WITHOUT SEPARATION AXIOMS
A.BLASZCZYK

Katowice

The aim of this paper is to show a generalization of the con-
struction of absolute presented in our papers [2] , [3] and [4] . We
shall prove the following Factorization Lemma : each skeletal map f :

EM ¥ , where E is extremally disconnected, is a composition

B £ 7 h X, where Z is extremally disconnected and the factor
h is irreducible and separated. By the use of this Lemma we give a
general construction of the absolute of a space assuming no separation
axioms. We shall also prove that projective objects in the category

of H-closed spaces and their continuous maps are exactly those which
are either finite spaces or Katétov extensions of discrete spaces.

The concept of the absolute in the compact Hausdorff case is due
to Gleason (8] (see also Rainwater [15 and Hager (94 ). In more gener-
al cases several constructions were given : Iliadis [11]1 , Ponomarev
M4 , Flachsmeyer l6] , Mioduszewski [12] , Mioduszewski and Rudolf
(131 , Banaschewski [1] , Dyckhoff [5] and in the case of To-spaces
our papers [2] , [3] and [4] . Recently general constructions of abso-
lute also in the absence of separation axioms was given by Ul’ janov
[171 and Sapiro [16] . Construction of the absolute presented in [17]
is a generalization of a construction of Ponomarev [14 . In [16] there
is improved the method of centered families used by lliadis [11].

All maps are assumed to be continuous. A map f : X2 =Y is ir-
reducible if clf(F) # Y whenever F is closed and F # X. A map is sep-
arated if distinct points with the same image have disjoint neighour-
hoods. A map is perfect if it is closed and preimages of points are
compact Hausdorff. A space is extremally disconnected (shortly, e.d.)
if the closure of each open subset is open. A map d; XM oy is
called to be an absolute of a space X if it is irreducible, separated
and perfect and the spaceXxX is e.d.

Lemma 1. If a map f : E———>X is irreducible and separated, then
for each g : E——>E& for which fog = f, g is the identity.

Proof of this lemma is an easy modification of 1.4. in [13]

Lemma 2. If a map £ : X >E is irreducible, separated and E is
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e.d., then £ is one-to-~one.

Proof.It is easy to check that if xe U, then f(x)e cl(E~clf
(X~U)). If f(x) = f(y) and x # y, then there exist disjoint open
sets U and V such that xe U and ye V ; f being separated. Since UAV
= @ and E is e.d.,

cl(E—clf(X~TU)) ncl(E—clf(X~V)) =g ;
a contradiction.

A map £ : X——>Y is said to be skeletal (see [13 ) provided
the preimage under f of each open and dense subset of Y is demse in X
or, equivalently; if Intclf’(U) = Intf”(clU) for each U being open in
Y. It is known that each irreducible map is skeletal and that the
class of all topological spaces and their skeletal maps forms a cate~

goTy.

Lemma 3. Irreducible separated maps are monomorphisms in the
category of topological spaces and their skeletal maps.
Proof of this lemma is analogous to the proof of Lemma 4 in [ 3]

Theorem 1., If a map £ : E2™ =X is irreducible and separated
and E is e.d., then the following are equivalent :
(I) £ is an absolute,
(II) for each map g : Y——>X, Y being e.d., there exists a
map h : Y——>E such that foh = g,
(1I1) for each skeletal map g : Y—>X, Y being e.d., there
exists exactly one map h : Y——>E such that foh = g.
Proof. 1.(I)=—> (II). To prove this implication let us consider
the pullback diagram '

gl

X—~——~———>E

where T = {(x,y)& Y*E : g(x) £(y)} and ¥ and Y are the restric-
tions of the natural projections. One can check that ¥ 1s separated
and perfect. A standard method shows that there exists a closed sub-~
set Z, Zc T, such, that ¥|Z is irreducible and onto. Hence, by Lemma
2, ¥1Z is a homeomorphism. The map Yo (¥|2)” is a desired one.

2, (II)>=>(III). This implication, by Lemma 3, is obvious.

3¢ (III)—> (I). This implication is contained in the proof
of Theorem 10 in our paper [3] .

Theorem 2 (Factorization Lemma). For each skeletal map
onto

f ¢+ E=——X, where E is e.d., there exists a factorization




47

Z
Xé:%ji:;iif§:>3

such that the factor h : Z——=X is irreducible and separated and Z is
e.d. and the family {0 (U)~clh' (V) : U and V are open in X} is a base
of the topology in Z.
Proof. Consider an equivalence on X assuming x~y whenever the fol-
lowing condition holds :
f(x) = £f(y) and for each U and V being open in X there is
xe £N(U) A clEfN(V) Iff ye £1(U) nclfH(V).
In the sequel the proof does not differ from the proof of Theorem 1 in
our paper (2], We define Z to be the set of all equivalence class of
the relation "~ " with the topology generated by the family {g(f*(U)n
clf*(V)) : U and V are open in X}, where g is the projection.

Note. The Factorization Lemma proved here differs from the
Factorization Lemma from our paper [ 2] , Namely, the equivalence re-
lation "~ " here is finer than that fxrom [ 2] (they coincide in the
case when X is a To-space). ’

Construction of the absolute.
Let X be a topological space. Consider all skeletal maps f : E—>X,
where E is e.d. These maps do not necessarily form “ar set. By Theorem
2, for each such a map there exists a factorization E g Z h —X,
where Z is e.d. and h is irreducible and separated. Since the family
{(h (U)Aclh'(V) : U and V are open in X} is a base in Z and h is sep-
arated, |Z|5§le-éxpm1 , where 7 is the topology in X. Hence there
exists a set S(X) of irreducible and separated maps g : ¥§————ax from
e.d. spaces Y_ onto X such that each skeletal map £ : Y——>X, where
Y is e.d., admits a decomposition Y—>7Y. & =X for some ge S(X).
It was proved inl[ 3] (see Lemma T) that for each topological space X
the set S(X) is non-empty; for each topological space there exists an
e.d. topology which is maximal in the set of all topologies on X
having skeletal contraction onto X. Let Y be the disjoint union of
all Y _ for ge S(X) and let £ : Yo% .X be the map induced by maps from
5(x). Clearly, Y is e.d. and f is skeletal ; fIYg being skeletal ( ir-
reducible maps are skeletal). By Theorem 2, there exists a facsoriza-
tion ? X aX X, where ux is irreducible and separated. Moreo-
ver, for each skeletal map f : Y—>X, where Y is e.d., there exists
a map h : ¥Y——->dX such that Lo h = f . Hence, by Theorem 1, dx : oX
——»X 1s the absolute. By Lemma 1, for each topological space the
absolute is unique up to a homeomorphism,
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Remark of the categorial character.

Let us consider the category TOP of all topological spaces and
thneir skeletal maps. By Theorem 1, for each skeletal map f : X—>Y
there exists a unique map f : dX——>«Y such that o« o # = fo ¥ ,

o« : « X——>X and dY.: AY——>Y being the absolutes. Hence the abso-
lute define & functor «: TOP——=ED , ED being the category of all
e.d. spaces and their skeletal maps. By Factorization Lemma, our con-
struction of the absolute falls under a general categorial scheme of
constructions of adjoint functors given by Freyd [7] , dual to the
construction of the Cech-Stone functor.

A map h : E——>dX, E being e.d., is said to be lifting over «X
of a map £ : E——=X provided that f = ¢X0 h, where dx : dX——>X is
the absolute.

Theorem 3, A map £ : E—>X, where E is e.d., admits a unique

lifting over o X iff
(%) Intclf' (U) = Intf (clU)
for each U being regularly open subset of X.

The proof of this theorem is the same as the proof of Theorem 3
in our paper [4] .

Note. The maps for which condition (% ) holds were considered
by Henriksen and Jerison [10] (see also [13] and(16] ) and are called
in the literature HJ-maps. However this class is not closed with re-
spect to the superposition. So, from the categorial point of view the
class of skeletal maps seems to be the best subclass of the class of
HJ-mapse.

An object P of the category K is said to be projective in K
provided for each epimorphism f : Y——=X from K and for each g : P
——>X from K there exists a morphism h : P——>X, he X , such that
g = foh. Gleason [8] proved that in the category of compact Haus-
dorff spaces and their continuous maps, projective objects coincide
with e.d. spaces. We shall prove the following

Theorem 4. Projective objects in the category of H-closed
spaces and their continuous maps are exactly those which are either
finite spaces or Katetov extensions of discrete spaces.

Proof.1, The necessity was proved in our paper [4] (Theorem 5).
2. To prove the converse let g : TD——=X and let £ : Y— X be a
map onto, X and Y being H-closed, <D denote the Katétov extension of
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discrete space D. Consider the following diagram
D
h
gl \\%;X<%~—~—‘~L““\ ll
X 7 Y X XY
The topologies of spaces tD, &X, &Y have contractions to compact
Fausdorff ones (such topologies are called compact-like), being H-

closed and e.d. The maps h and k exist in virtue of Theorem 1. Since
foal is onto and &~ is irreducible and dY is H-closed, k is onto.
Thus, by Theorem 6 in our paper [4] , there exists a map 1 : TD——gy
such that ko1l = h. Therefore g = fo o¥o 1. The map «fo 1 is the de-

sired one.
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