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ON GENERALIZED VECTOR TOPOLOGIES
S. GAHLER

Berlin

The present paper deals with certain classes of genei'alized
vector topologies which in the investigations on general extremality
theory in [2] are of importance., For this, let R be a linear space
and 10, the set of all (T1—)vector topologies on R, Let 10, denote the
gset of all translation invariant T -topologies on R, each of which
has an open base B at O consisting of equilibrated and absorbing
sets such that «U € B for every « > 0 and every U ¢ B, loreover, let
403 denote the set of all tramslation invariant T1—topologies on R,
each of which has an open base B at O consisting of algebraically
open sets such that «U ¢ B for every o > O and every U ¢ B,

Evidently, 491 102 c 40 « The equality signs hold if and only
if dim R ¢ 1 (see [1], Theorem 13, and (2}, Theorem 5), In what
follows, we give examples of topologies of 4§ \‘iO1 and of 40 \492.
Let be dim R = 2 and fe,, e,] a base of R, By B we denote the set of
all sets

Usg

4|£2

= {p = iﬂieillﬂ1'< £1 and (Tl'1 ,1T2)¢ {o}k((-w,-gz.]ufiz’w))}’
31=1 .

where 81, £, are positive real numbers, respectively the set of all
algebraically open sets
X 2

Ue om0 = (P =§41Tiei‘~§,,"i < 1ip4pg, t=1,2,.01
where ¢ is a positive real number and P1s Pos oo 8 suitable se-~
quence of points # O converging relative to the natural topology of
R to 0. In both cases there exists a unique translation invariant
topology T on R with B as open base at O, In the first case we have
T ¢ ‘\02\ ‘W1 and in the second case we have T € 103\ 102.

As is well known, a topology T & 19, belongs to 401 if and only
if for every U € B there exists a V& Bwith V + V¢ U, A topology
T ¢ 493 belongs to ’\92 if and only if there exists an open base B at
O consisting of equilibrated sets.

The topologies of ’1-92 and '103 may be characterized by cortinu-
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ity properties of the vector addition and the scalar multiplication
in an analogous way as it is well known for vector topologies,

Theorem 1., A T1-topology T on R belongs to 102 if and only if
the following two conditions are satisfied:
i, For every q € R the mapping p —+p + q of R into R is con-
tinuous on R.
ii, The mapping (&,p) »o«p of RxR into R is continuous at
every point («,0) and at every point (O,p).

A T,-topology T on R belongs to 193 if and only if the condi-
tion i and the following condition are satisfied:

ii', For every &« > O the mapping p - «p of R into R is continu-
ous at p = 0; for every p € R the mapping &« — op of R into R is
continuous at &« = O,

Proof, Concerning the characterization of the topologies of
0oy We refer to [1], Theorem 7. Now we show that for every T1-to-
pology T on R to belong to 403 the conditions i and ii' are neces-
sary and sufficient, At first, let be T ¢ 103. From the trans-
lation invardiance of T, for arbitrary q e R we get the continuity of
the mapping p-»p + q of R into R on R, Since for every &« > 0 and
every neighbourhood U of O the set f;U also is a2 neighbourhood of O,
the continuity of the mapping p— «p of R into R at p = 0 is true.
The open sets being algebraically open, for every p ¢ R the mapping
o —+ap of R into R is continuous at « = O, Therefore the conditions
i and ii' are satisfied., Conversely, now let T be an arbitrary T1-
topology fulfilling i and ii', Using condition i, easily we get the
translation invariance of T. Let B denote the set of all open neigh-
bourhoods of 0, By the second statement of condition ii' and the
translation invariance of T, the sets of B turn out to be algebra-
ically open. From the first statement of condition ii' and the
translation invariance of T, it follows «U ¢ B for every « > O and
U € B, Thus, we have T ¢ 493 and the proof of the Theorem is
complete,

Theorem 2, A topology T ¢ 402 belongs to 491 if and only if the
mapping (p,q) - p + 9 of Rx R into R is continuous at (0,0). A
topology T € 403 belongs to 492 if and only if the mapping («,p) — «p
of RxR into R is continuous at (0,0).

Proof. The first statement of the Theorem is evident., By
Theorem 1, also it is obvious that for T e 403 to belong to 492 the
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continuity property of the second statement of the Theorem is
necessary, Ve now prove the sufficiency. Thus, we assume that for a
given T ¢ 403 the continuity property is fulfilled. For any neigh-
bourhood U of O there exist a B>0 and a neighbourhood V of O with
(-p4p)V ¢ U, From this, for any o > O we get (O,2o<)(:—£ V) ¢ U and
hence we have the continuity of the mapping (e,p) - «p of Rx R into
R at the point (e,0), For any p e R let g be a2 real number > O with
§p € V. From (-§,p)V ¢ U, we get (-Bg,pg)(4(V - ¢gp) + p)c U and
hence we have the continuity of the mapping (&,p) - a«p of RxR into
R at (0,p). By Theorem 1, T ¢ 402. Thus, the Theorem is true.

For any non-empty set M of topologies on R, by Tm we denote
the coarsest topology on R which is finer than all topologies of I,
As is well known, WL ¢ 401 yields ¢ Q4. Analogous statements with
‘regard to 402 and 49, also are true, that is, we have

Theorem 3. For W (4 @) ¢ @i (i = 2,3), T®¢ ADi.
Proof. [1], Theorem 11, and [2], Theorem 4.

As for i = 1, because of Theorem 3, for i = 2, 2 in 491 there
exists a finest topology Tw". Concerning a characterization of T“‘,
we refer to [3], 6.C. By (1], Theorem 12, and [2], Theorem 5, we get
the following

Theorem 4. T‘m1 is the topology on R which has as an open base
at O the set of all subsets U of R such that for every finite-dimen-
sional subspace R' of R relative to the natural topology of R' the
set UnR' is an equilibrated open neighbourhood of O. %3 consists
of all algebraically open sets of R,

Theorem 5. Tw" belongs to 491 if and only if dim R is finite,
™3 belongs to 49, (and hence to 49,) if and only if dim R ¢ 1,

Proof, (1], Theorem 12, and [ 2], Theorem 5.

With regard to the partial ordering 2« given by T ¢« T'< T ¢ T',
the topologies 7% and T%s are the maximal elements of 402 and 403,
respectively. As to minimal elements of 402 and of 493, we have the
following

Theorem 6., Let be dim R > 2. Then the minimal elements of 402
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and of 403 do not belong to 104.

Proof., The statement is an immediate consequence of [1],
Theorem 13,

In what follows, we restrict ourselves to the case in which R
has a finite dimension n > 2., Let be {e1, seey en} a base of R and
the euclidean norm on R with respect to this base., Moreover, let
be K = {p ¢ R; u(p) < 1} and oK = {p ¢ R; p(p) = 1}. For any p ¢ 2K
we denote by R_ the (mn-1)-dimensional linear subspace of R con~
sisting of all points of R orthogonally to p and by ﬂb the ortho-
gonal projection of R onto Rp. Let T' be the natural topology of R,

Theorem 7. For any T € 402, T & T', For T e'@3, T'2 T if and
only if for every point p € oK there exist an equilibrated T-open
set U with 0 ¢ Ur\Rp ¢ K, a point q ¢ U with p(w (q)) > 1, and an
equilibrated T-open set V with O ¢ V& Un(U + q).

Proof. Concerning the first statement of Theorem 7, we refer to
(11, Theorem 9, In [1], Corollary to Theorem 9, the second statement
is proved in the special case T e402. The proof in the case T 6‘@3
is obtained from this by some slight modifications.

Corollary, For T ¢ ME, T = P' if and only if for every point
p € 0K there exist a T-open set U with 0 ¢ Uf\Rp ¢ K and a point
q e U with p(wp(Q)) > 1.
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