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OK CLOSED GRAPH THEOREMS 

M. WILHELM 

Wroclaw 

Let T be a topological space, let (X,d) be a complete metric 

space, and let f be a function on T to X. Put df(u,v) = d(f(u),f(v)) 

for u,veT; df is a pseudo-metric for T. The letter U will stand for 

open sets in T. 

Definition. d«(u,v) = sup inf df(u',v), u,veT. 
1 U * u u' 6 U 

Theorem 1. The function df on TXT to R* has the following 

properties: 

(i) df U,t) * 0. 

(ii) df(u,v) • inf X sup df(u^,v) : u €• lim \x6\ 

(iii) df(u,v) ̂  df oi,v) 4 df(u,v) + fd^u), where fd(u) « 

inf sup df (u' ,u). 
U z u u' t U 

(iv) If f is continuous at t, then df is continuous at (t,t) and 

df(t,v) » df(t,v) for all veT. 

cv) |df(t,u) - df (t,v)| <. df(u,v). 

ivi) df is lower semicontinuous in first variable, 

(vii) If df is symmetric, then it is a pseudo-metric. 

We say that f is nearly continuous at t if for any open set 
-1 

T containing fCt), t is in the interior of the closure of f (T) 

(cf. Kelley & Namioka 131) • If f is continuous at t, then f is 

nearly continuous at t. 

Theorem 2. The function f is nearly continuous at t if and 

only if the function df is continuous in first variable at (t,t). 

Theorem 3. (cf.fel- M , (/0) Suppose that at least one of 

the following three conditions is satisfied: 

(a) T is metrically topologically complete, 

(b) the graph of f is metrically topologically complete in its 

relative product topology, 

(o) the counter image of any compact set is compact. 
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Then the following three conditions are equivalent: 

(X) f is continuous; 
(ii) the graph of f is closed and f is nearly continuous; 

(iii) the graph of f is closed and df is continuous in first var

iable at every point of the diagonal ACT). 

Our central result, Theorem 4, shows that the dual statement -
concerning the continuity of d- in second variable - is also true. 

Neither of them implies the other. Notice that in Theorem 4 no as
sumptions like (a), Cb), or cc) of Theorem 3 are necessary. 
We give here a self-contained proof; another one, based on the in
duction theorem of Ptak L53, i* contained in a more extensive paper 
on the subject submitted to Fundamenta Mathematicae. 
Let us say that the graph of f (denoted by G(f)) is closed at t if 
for any point xeX, Ct,x)€ (T(f) implies (t,x)eG(f). if f is contin
uous at t, then the graph of f is closed at t. 

Theorem 4. Let t eT. The function f is continuous at t if (and 
only if) the graph of f is closed at t and d- is continuous in sec
ond variable at the point (t,t)££(T). 

Proof. Let 6 > 0. Since df is continuous in second variable at 

Ct,t), there are open, sets U n containing t such that 

V d f ( t ,u ) < £ 2 - n ^ 
ueU n 

that i s 
V V 3 d f ( t ' , u ) < £ 2 - n ^ 
U £ U U f r t t ' € U 

n 

Choose any v £ U^ ; it is sufficient to prove tha.t df(v,t)^ £. 
Sinoe v s ^ , there are t^^U with df(tj,v) < £2~4. 

Since tj e u2, there are tJeU with df (t^,tj ) < £2~5. 

Continuing this prooess we obtain some .elements tS £ U (where open 

U * t and n e l ) with df(tn*1,t? ) < £2~n~4. The product net £t n] 
u un+1 u 

(t£ ^ tjj* iff U 2 U ' and n ̂  n#) is convergent to t and 

«Ct^1.tn) ̂ df(^ 1,t n
n + i) • «(tSa+i.tJ-

1) • afCtS.t*-1) < 

£2" n- 4 • £2- n" 3 + £2- n- 5<£2- n- 1. 
Hence {f (t£)} is a Cauohy net and 
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df(tj,v) <̂  df (tj,tj) + df (tj,v) < £2~1 * £ 2 ^ < £. 

Since the metric space (X,d) is complete and the graph of f is closed 

at t, the net \*(tjj)} converges to fit), which implies 

df(t,v) » lim df(tg,v) < L. 

From now on we assume that T is a topological group, (X,d) is a 

complete metric group with d left-invariant and f is a homomorphism 

on T to X. 

Theorem 5. The function d- is a left-invariant pseudo-metric 
for T and 

d.f(.u,v) c »UP ia* df(u',v') for u,v£T. 
U 9u u'eU 
V 3 v v* fc V 

Theorem 4 together with Theorems2 and 5 yields immediately the fol
lowing result of Kelley (T2]f Problem R on p.213). 

Theorem 6. The homomorphism f is continuous if and only if the 
graph of f is closed and f is nearly continuous. 

Finally, let us recall some assumptions under which the homomorphism 
f is automatically nearly continuous; 

CD T is of the second category and f(T) is separable (cf„ Weston 
Ds3f Theorem 3 on p«345), 

U2) T is of the second category and T and I are linear topological 
spaces over the field of rationale (cf. ibidem), 

C3) T and X are locally convex spaces , T is barreled and f is 
linear (cf. Kelley & Namioka [33, Problem E on p. 106). 
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