
Toposym 4-B

Gerhard Grimeisen
The limit inferior of a filtered set-family as a set of limit points

In: Josef Novák (ed.): General topology and its relations to modern analysis and algebra IV,
Proceedings of the fourth Prague topological symposium, 1976, Part B: Contributed Papers. Society
of Czechoslovak Mathematicians and Physicist, Praha, 1977. pp. 149--153.

Persistent URL: http://dml.cz/dmlcz/700662

Terms of use:
© Society of Czechoslovak Mathematicians and Physicist, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/700662
http://project.dml.cz


THE LIMIT INFERIOR OF A FILTERED SET-FAMILY AS A SET 

OF LIMIT POINTS 

G. GRIMEISEN 

S t u t t g a r t 

I t i s well-known ( see Kuratowski [ 6] , p . 2^2) t h a t in each m e t r i c 

space E the l i m i t i n f e r i o r l im i n f An of each sequence (A ) wi th k^C E 

i s t h e s e t of a l l x€E such t h a t t h e r e e x i s t an n Q ( x ) ^ IN and a sequence 

(a (x ) ) i n E wi th a ( x ) £ A for a l l n > n Q (x ) and x = l im a ( x ) . In 

t h i s p a p e r , we give ( i n P r o p o s i t i o n 3) a modif ied g e n e r a l i z a t i o n of 

t h i s s t a t e m e n t t o a ( g e n e r a l ) t o p o l o g i c a l space E and t h e l i m i t i n f e r i o r 

l im i n f (f , I , *u) of a f i l t e r e d family ( f , I , ^ ) wi th f ( i ) ^ E fo r a l l 

i 6.1. 

For t he r ema inde r , l e t (E, T ) be a t o p o l o g i c a l s p a c e , 1PT t h e 

ne ighborhood o p e r a t o r , Lim the l i m i t o p e r a t o r , l im i n f t h e l i m i t 

i n f e r i o r induced by the topo logy T . For a b b r e v i a t i o n , we w r i t e j u s t 

V , Lim, l im i n f i n s t e a d of P , Lim , l im i n f i f no confus ion can 

a r i s e . 

1 . Terminology. In every r e s p e c t , we s h a l l use t h e same t e r m i n o l o ­

gy as used o r i n t r o d u c e d i n [ 4] , For nonempty s e t s I and K and f i l t e r s 

AX, and ^ o n I and K, r e s p e c t i v e l y , /*. ® lr deno tes t he o r d i n a l p roduc t 

of AX, and k- (which i s a f i l t e r on I X K)(see [ 31 , p . 330 and p . 336, 

Satz 2 3 ) . Given a f i l t e r M/on a s e t I and A e /*,, AJV d eno t e s t h e t r a c e 

of AXS i n t he s e t A; f u r t h e r m o r e , i f , fo r each i t l , a s t a t e m e n t form 

H( i ) c o n t a i n i n g i as a f r ee v a r i a b l e i s g i v e n , we say t h a t H( i ) ho lds 

" f o r AX - a lmos t a l l i £ I " i f and only i f , f o r some A e vo$ H( i ) h o l d s 

fo r a l l i eA. Given a mapping f and a s e t B £ $ f, we denote t h e 

r e s t r i c t i o n of f t o B by fg. R e c a l l t h a t , fo r each s e t M, *M deno tes 

the c l a s s of a l l f i l t e r e d f a m i l i e s i n M. For each d i r e c t e d s e t (D, < ) , 

i . e . fo r each s e t D wi th a r e f l e x i v e and t r a n s i t i v e r e l a t i o n < such 

t h a t each f i n i t e s u b s e t of D has an upper bound w . r . t o < , we denote 

by ^ D the " f i l t e r of p e r f i n a l i t y " on D, which i s de f ined t o be t h e 

f i l t e r on D g e n e r a t e d by t he s e t {{z | y < z e D } | y £ D } . E s p e c i a l l y , 

for each X 6 E , ( K ? x , 2 ) i s a d i r e c t e d s e t , and so T ( l r x ) i s t h e f i l t e r 

of p e r f i n a l i t y on J0x. 

2 . Connect ion between l im i n f and Lim. The mapping l im i n f i s an 

e x t e n s i o n of t he mapping Lim i n t he sense of 
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Proposition 1. Let < denote the mapping x ̂  {x} on E into 

7&E. Then 

Lim (f, 1,^/) = lim inf ( K O f, l,x*0 

holds for all (f, l9w) 6 *E. 

Proof. Use of the definitions only. D 

While Proposition 1 remains true in general finitely additive 

quasitopological spaces (see Section 4), this is not the case for the 

next proposition: 

Proposition 1'. In the notation of Proposition 1, one has: 

Lim (f, 19AK) = lim inf (T O K O f, I, x&) 

holds for all (f, I,^)6*E. 

Proof. Use that, for each X6E, lUx is generated by the class of 

all open neighborhoods of x; furthermore that f(i)^x{f(i)} for all 

i el. Q 

One half of the statement on lim inf A_ in the introduction is 
n — n 

still true in general topological spaces: 

Proposition 2. For all x e E and all (f, I, x*.) £ $(j£ E), the 

following statement form (a) implies (b): 

(a) There are an A£/x and a g^Pffi) such that x e. Lim ( g , A , ^ ) . 
ieA A 

(b) x e l im i n f ( f , 1$AJL). 

Proof . Use of t h e d e f i n i t i o n s of Lim and l im i n f i n te rms of V • • 

The f u l l g e n e r a l i z a t i o n of t h e i n t r o d u c t o r y remark on l im i n f A 
n->» 

i s g iven by: 

Proposition 3. For all x6E and all (f, !,**>) & *C]2E), the 

following statement forms (a) through (d) are equivalent: 

(a) x 6 lim inf (f, 1 , ^ ) . 

(b) There e x i s t s a mapping g on ( Vx) X I i n t o E wi th t h e 

f o l l o w i n g p r o p e r t y : 

g(V, i ) 6 f ( i ) fo r ( ( ^ ( V x ) ) ® ^ ) - a l m o s t a l l (V, i ) £ ( 1 f x ) X i 

and x 6 L i m ( g , ( Vx) X I , ( t f ( W x ) ) ® AJL). 
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(c) i s o b t a i n e d from (b) by r e p l a c i n g the q u a n t i f i e r " f o r 

( ( Y C l P x ) ) ®AX) - a lmos t a l l " by " fo r { V x}<8> ^ - a l m o s t 

a l l " . 

(d) There are a C 6( ^ ( Vx)) ® ^ and a g £ P f ( i ) 
(V, i )6C 

such t h a t x ^ L i m ( g , C, ((%(Vx)) ® AJC)Q). 

Proof . See [ 5a] . D 

3* Applications of the preceding propositions. It would be 

desirable to regain "nice" properties of certain subspaces of (^E,T2T) 

(the power of (E, T ) ) from corresponding or related properties of 

(E, T ) , or conversely, by means of the preceding propositions. A simple 

step in the desired direction can be seen in the next proposition. 

Proposition 4. Let I c (ilE) \ {0} and assume {x} e-VL for all 

x^E. Then, the subspace (K, (]2 T ) ) of (^E,]CT) is compact if and 

only if (E, T ) is compact. 

Proof. One uses Propositions 1 and 2. For details, see [5a] . ---

While the proof of Proposition 4 can be carried over, word by 

word, to finitely additive quasitopological spaces (see Section 4), 

this is not the case for the proof of the next proposition. 

Proposition 4f. Let W/c. (^E) \ {0} and assume T{X} e Vt for all 

X6E. Then, the subspace OWL, (T^X™) o f ( T 2 E , ^ T ) is compact if and 

only if (E, T) is compact. 

Proof. One uses Propositions lf and 2. For details, see [5a]. E 

Remark. Proposition 4 contains the special case dlu = ^ E \ {0}. 

In this case, (Hts ^i^T^tm ^ coincides (see [5]) with the hyperspace 

of lower semicontinuity of (E, T) (see Michael [7], p. 179, Definition 

9.1 ("T̂ E \ {0} with the lower finite topology"), and (for "closure 

spaces") £ech [1], p. 623, Definition 34 A.l). Proposition 4f contains 

the special case M = 2 (= set of all nonempty closed subsets of (E, T ) ) . 

In this case, (Mt, (?2'TW) coincides (see [5] or Flachsmeyer [2], 

p. 326, 2.1, or Poppe [8]) with Michaelfs space 2 endowed with the 

"lower finite topology" ([71, loc. cit.) . While this special case of 

Proposition 4f occurs in the literature (with a different proof, using 

Alexanders Lemma (see Flachsmeyer [2], p. 327, 2.4)), the author could 
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not find a reference concerning the mentioned special case of Pro­

position 4. 

In the paper [4], we have considered topological spaces (E, T ) > 

(F, a), (G, X), relations R£ £ X F, S£ F X G with % R Q $> S, and -

respectively - the canonical mapping R, S, S o R induced by R, S, S o R, 

which is a mapping from (in general not on.) (E, T ) , (F, a), (E, T) in­

to the power (^F,^a), C/cG^X), (^G,^X) of (F, a), (G, X), 

(G, X), as we do now for the following. We recall the validity of the 

logical diagram 

A A 

II R and S continuous ••• '••'> R and S continuous 

I S o R continuous ' u> S o R continuous J, 

and use Proposition 3 to reprove the right-hand arrow, more p rec i se ly , 

to reprove the next proposit ion (cf. £ech [ 1 ] , p . 631, Theorem 34 B. 14, 

and [ 51;furthermore, see [ 4 ] , p . 4 l , Proposition 7) : 

Proposition 5 * I f R i s (x, il a) -continuous and S i s ( a , ^ x ) - c o n -

t inuous , then S o R i s (T , "ft X) -continuous . 

Proof. See [ 5a] . • 

4. Generalization. The Propositions 1, 2, 3, 4, 5 and their proofs 

remain valid if the topological spaces (E, T ) , (F, a), (G, X) are re­

placed by general finitely additive quasitopological spaces (termino­

logy: [ 5] ) except for the following change within Proposition 3: Within 

(b), replace "There exists" by the words " Vx is a filter and there 

exists". Within (d), replace "There are" by the words " Vx is a filter 

and there are". - A quasitopological space (E, T) is called to be com­

pact if and only if Lim ML t 0 for all ultrafiltersAX in E. 
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