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ON A PROBLEM OF KATETOV 

M. L. WAGE 

New Haven, Connecticut 

In his 1958 paper [1], M. Katetov studied extensions of locally finite 

covers. Consider the following statements. 

(1) X is collectionwise normal and countably paracompact. 

(2) Every locally finite open family in a closed subspace of X can be 

extended to a locally finite open family in X. 

(3) Every locally finite functionally open family in a closed subspace of 

X can be extended to a locally finite open family in X. 

(4) X is collectionwise normal. 

In [K], Katetov proved (1) -* (2) ->• (4) and asked if the converses of these 

Implications hold. Przymusinski recently answered one of Katetovfs questions by 

showing (2) +* (1) under V = L. He also noticed (2) -> (3) -* (4) and conjectured 

that (4) *- (3) **• (2) . In this paper we settle the remaining question of Katetov 

by showing that (4) -*(3) •* (2). No set theoretic assumptions beyond the axiom of 

choice are. needed, but we do show how extra assumptions can be used to strengthen 

the results. Details of results not proved here will appear in [3], along with re

lated results of Przymusinski and the author. Included in [3] will be Przymusidski1s 

work relating Katetovfs properties to partitions of unity. 

Definitions: If { V I a € x} is a family of subsets of K, a family 

{uja € x} is said to extend (vja 6 x} if Ua fl K = Va for all a € x . A set 

is called functionally open (= cozero) in X if it can be represented as 

{x € Xjf(x) ̂  0} for some continuous function f:X -> R. In a normal space, the 

functionally open sets are just the open F sets. Przymusinski has defined a normal 

space X to be Katetov if it satisfies (2) above, and to be functionally Katetov 

if it satisfies (3) above. We will use Przymusinski1s terminology throughout the 

rest of this paper. 

§ V V 

1: Functionally Katetov, not Katetov Spaces. 

In this section we give two examples of spaces that are functionally Katetov 

but not Katetov. 

Theorem 1: The Dowker space constructed by M. E. Rudin in [4] is function

ally Katetov but not Katetov. 

Theorem 2; V = L implies there is a space that is functionally Katetov, 

locally countable, and of cardinality co- but is not functionally Katetov, 

We give Theorem 2 for two reasons. First, the construction for Theorem 2 is 

easier to work with than Rudinfs construction (at least for those readers acquainted 

with the important technique used by Ostazewski in [2]). Second, V -= L allows us 
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to build many nice properties into the example. Not only does it have the proper

ties listed above, but (as in [2]) it can easily be modified to be locally comract, 

hereditarily separable, and first countable. We will prove Theorem 2 in detail 

since the proof will not be given in [3]. 

A Sketch of the proof of Theorem 1. We refer the reader to [4] for the con

struction of Rudin's example, X. To show that X is not Katetov, let 

K = {f € X|f(n) = COQ for some n} and V - {f € x|f(i) - co± iff i - n} for 

each n € co. Then K is closed in X and {V |n € co} is a locally finite open 

family in K that can be shown to have no locally finite open extension to X. The 
V 

key to proving that X is functionally Katetov is the fact that every F in X 

is closed. a 

Proof of Theorem 2: Unless otherwise stated, a and {3 will denote count

able ordinals, \, Z, y, and r\ will denote limit ordinals less than or equal to 

co , and n, m and k will denote non-negative integers. Thus a phrase such as 

"for all a, \€ A" should be read "for all a, X € A such that a < co-, X < co-, 

and X is a limit ordinal". 

Let {S\ |\ < co } satisfy 

(1) for all \, S^ is a cofinal subset of \ that is cofinal in no smaller 

limit ordinal, and 

(2) if S is an uncountable subset of co.., then there Is a X with 

S x c S . 

Recall that V = L implies that such a sequence exists. 

The construction. Let Y, = co x \ for all \. Let T be the discrete 
A. CO 

topology on Y . For each \, inductively construct T, from {T^:K < \} in the 
CO A. fc, 

fol lowing way. 

If \ is a limit of limit ordinals, let T, be the topology generated by 

u{Te-|e< \ } . 
If \ = £ + co for some £, partition S~ into co x co infinite pieces, 

S . Let T, be the topology generated by all sets, U, of any of the following n,m A. 

forms: 

a) U € T^ 

b) U = {(0,£ + m)} for any m. 

c) U = (n,£ + m) U V for any m and V € rv~ such that either 

(i) n is odd and V contains all but finitely many points of 
{0} x s . or n,m 

(ii) n is positive and even and V contains all but finitely many 

points of {n-2, n-1, n} x s 
n,m 

Let Y = Y and T = T . Then (Y,T) is a functionally Katetov space 

that is not Katetov. 
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Verification of the properties of Y. For notational convenience, let 

F = {n} x co- and set TT (A) = {a| (n,a) € A for some n} for each A c Y. Proofs 

of the first three facts below are left to the reader. 

1) n x a 6 T^ for all n,a and X with a < X. 
f\. 

2) F. U F € T for each odd n. 
u n 

3) (n,a) € C-L-- ({m} x S ) whenever r) < a < £ and either 

a) 0 < n is even and m = n , n - l or n - 2 , or 

b) n is odd and m = 0. 

4) If for some £, V is clopen in T and sup TTV < £, then V is 

clopen in T. for each X > £. 

Proof: Let V and £, be as in the hypothesis. For all X > £, T ^ C T, 

and hence V is open in T, . We prove by induction that V is also closed with 

respect to T, . Fix X > £ and suppose that V is clopen in T for each r\ 
A T) 

such that £ < T) < X. 
If X is a limit of limit ordinals, then U , T is a base for T, . Since 

-n<X T) 'X 
X - V € T for all rj < X, (X. - V) = U , (X - V) € T, also. 
T) T) A. T)<A T) A 

If X = T) + co for some r) , notice that since sup V < rj, TTV contains only 

finitely many points of S . Since V is closed in T , (Y - V) U {(n,r)+m)} € T, 

for all n and m. It follows that Y. - V € T, . D 
5) Y is regular. 

Proof: We prove each T, is regular by induction on X. Note that T is 

regular. Fix X and assume that for each £ < X, % is a regular topology. Let 

U € T, and x € U. We will show there is a clopen V with x € V c U, and hence 

T, is regular. There are two cases. 
A 

If X is a limit of limit ordinals, then x € Y^ for some £ < X. Since 

T ~ is regular and X is countable, there exists a clopen V ( T . with x € V c TJ 

and sup TTV < £. Then by (4) V is clopen in T, also. 
———• A 

Now assume X = £ + co for some £. Since T ~ satisfies (1), the set 

co x S is closed and discrete in X . Since X^ is countable and regular, there 

exists a closed discrete collection {V |n € co,s € S^} such that (n,s) € V , 
n,s E, n,s 

each V is clopen, and V fl V ^ = <f> unless n = m and s = t. In the n,s r * n,s m,t ^ 
light of the collection {V |n € co,s € S^}, the regularity of T> easily follows 
from the regularity of T; and the definition of T V . D 

4 X 
6) Any two closed uncountable subsets of Y intersect. 

Proof: Let H and K be uncountable closed subsets of Y. Then for some 

n, H has an uncountable intersection with {n} x co.. and hence contains {n} x s 

for some y BY (3-a), this Implies that H contains all but countably many 

points of F-, where k is the first even integer greater than n. By applying 

(3-a) repeatedly, it follows that H contains all but countably many points of F 
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for each even j > k. Since a similar statement holds for K, we have Hfl K ^ . 

7) Y is normal. 

Proof: Let H and K be two disjoint closed subsets of Y. By (6), at 

least one of H and K is countable. Without loss of generality we assume H is 

countable. Choose X < co such that X > sup TTH. Then since Ys is countable and 

regular, there is a V, clopen in T. , such that H c v and Vfl K = 4>. Moreover, 

by (1), V can be chosen so that sup TTV < X. Then (4) implies that V is a 

clopen separation of H and K in Y. D 

8) Y is functionally Katetov. 

Proof: Assume K is closed in Y and U is a locally finite functionally 

open family of K. We must show that U has a locally finite open extension to Y. 

First note that U must be countable, for is not, choose x.. € U for each U € U. 

Since U is locally finite, {x-jlu ^ U} is an uncountable closed discrete collec

tion in Y. But every uncountable subset of Y contains {n} x S-. for some n and 

X, and hence is not closed discrete. Write U as {U |n € co}. 

Next observe that if any U is uncountable, then since it is functionally 

open, it contains an uncountable closed set, and hence K - U is countable (by 

arguments similar to those used in (3-a) and (6)). Thus only finitely many of the 

U are uncountable and we can assume without loss of generality that none of the 

U are uncountable, 
n 

Choose £ > sup(U ) for all n with £ so large that each {n} x (con- £) 
n x 

has a neighborhood, W , in Y whose closure intersects only finitely many U . 

(The reader can check that such an K actually exists.) Y~ is regular and count

able, and hence Katetov, so there exists a locally finite (in Y~) open collection 

{V In € co} such that V flK = U . 
n __ n _n 

Let V* = V - U{W |m< n and W fl U = <*>}. 
n n m1 m n 

Then {Vf|n € co} is the desired extension of {U |n € co}. a 

9) Y is not Katetov. 

Proof: Let K = Y - FQ and U = { F j n is odd}. By (1) and (2), U is 

a locally finite open family in the closed subspace K. If U is open in Y and 

U n K = F for some odd n, then (3-b) implies that FQ - U is countable- It 

follows that the family U has no locally finite open extension to Y, and hence 

Y is not Katetov. D 

§ 2 : Collectionwise Normal, not Functionally Katetov Spaces. 

In this section we modify Rudin's example, X, to produce an example, Z, of 

a space that is collectionwise normal but not functionally Katetov. The modification 

can be done on any "nice" Dowker space to produce an example. Using V • L, one 

can construct a collectionwise normal, not functionally Katetov space that is 
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hereditarily separable, locally countable, and of cardinality co . 

Let W *- {f € x|f(i) = co. when i < n and cf(f(i)) 5 co for all i > n} 
n i n 

for each n > 1. Set W « U{W |n > 1} and give W the subspace topology from X. 

For n,m Ceo and A c w, let A * denote A x (n,m) and A denote A x {n}. 

Define 

Z - WUU{Wn,m|n,m € co,m > l}UU{w£|k> l,m 6 co}. 

We generate a base for Z from the open sets in W. For each U, open in W, and 

each n,m € co with m > 1 and sequence of integers {k |i € co}, the following two 

sets are declared to be basic open subsets of Z: 

(u n w- ) n , m u (u n w ) n 

1 m 
uuu{(u n w 1 ) i , j | i > k }UU{(u n w . / l i > k } . 

Then Z is a collectionwise normal space that is not functionally Katetov. We will 

sketch the proof that Z has the desired properties; details will appear in [3]. 

To see that Z is not functionally Katetov, let 

K = (W - W-)UU{Wn|n,m € co,m > 1} and set V -» UfW^n € co} for each m > 1. Then 

{V |m > 1} is a locally finite functionally open family in the closed subspace K 

that can be shown to have no locally finite open extension to Z. 

The proof that Z is collectionwise normal is the hard part of this example. 

The following difficult fact is used repeatedly in the proof. 

Lemma; For each n, W- U W is collectionwise normal and countably para-

compact . 

§3: Katetov Spaces that are not Countably Paracompact. 

We have already mentioned that Przymusinski has used V = L to construct a 

Katetov space that is not countably paracompact. He does this by constructing a 

hereditarily normal, hereditarily separable Dowker space, and then showing that every 

such space is Katetov. It would be nice to have an example of a Katetov space that 

is not countably paracompact whose construction does not use set theoretic assump

tions beyond the axiom of choice. The author conjectures that the space W (cons

tructed in §2) is such a space. It is hoped that this conjecture will be settled in 

I3J. 
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