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RELATIVE CONNECTEDNESSES AND DISCONNECTEDNESSES 
IN TOPOLOGICAL CATEGORIES 

Gerhard Preufi 
Berlin 

Starting with works of the author, A.V. ARHANGEL'SKII and 
R. WIEGANDT [l] have studied connectednesses and disconnectednesses 
in topology. They have stated necessary and sufficient conditions for 
the case that a class of topological spaces is a connectedness or 
disconnectedness respectively. Correspondingly, the author character­
izes relative connectednesses and disconnectednesses in topological 
categories. Therefore the results may be applied to nearness spaces 
which have been developped by H. HERRLICH [3]» The relativization of 
connectedness is obtained in a natural way if one looks for a concept 
of connectedness such that the corresponding components may be iden­
tified with the quasicomponents introduced by P. HAUSDOEFF [2]. 

Let £ be a concrete topological category in the sense of 
HERRLICH [3]t which is properly fibered* Thus initial and final 
structures exist and they are uniquely determined by their defining 
properties. 

Let 0(2) be the category of pairs with respect to C, i.e. 

(1) objects of C/gN are pairs ((X,?), (Y,r|)) where (X,?) is an object 

in C9 Y a subset of X and r\ the initial structure with respect to 

(Y,i,(X,£)) where i: Y -* X is the inclusion map. 

(2) morphisms f: ((X,? ), (Y,TI) ) -> ((X1,? ' ) , (Yf ,T] •)) are morphisms 

f: (X,?) -> (Xf'§') in C such that f [Y] c Y
1. 

For each subclass E of |c| let us define 
Crel — ~ ^ (X>Y) ^ '£(2)' : Y i s

 f 5 ~
c o n n e c " t e ( i wi,tn respect to X, i.e» 

f| Y is constant for each E € E and each CJ-morphism f: X -* E } • 

K c |C/p\| is called a relative connectedness, iff K = c -, E for 

some E c | c| . 
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For each subclass K of IC/p\l let us define 

D ., K = { Z € |fj| : f|Y is constant for each Cj-morphism f: X -> I and 

each Y c X satisfying (X,Y) € K }. 

E c | CJ| is called a relative disconnectedness, iff E = D , K 

for some K c | C/pJ . 

The following two theorems characterize relative connected­
nesses and disconnectednesses. 

Theorem 1 : Let K be a subclass of IC(pJ# Then the follow­
ing are equivalent: 

(1) K is a relative connectedness. 

(2 ) K = PK : = C r e l I > r e l K . 

( 3 ) ( a ) {(X,Y) € I C / p J : Y c o n s i s t s a t most of a s i n g l e 

e l emen t } c K 

(b) Let (X,Y) € K, and f: (X,Y) -* (Xf,Yf) a 

C/2x-morphism such that Y
f = f [Y]. Then (Xf,Yf) € K. 

(c) Let (X,A. ) € K for each i belonging to an index 

set I, and O A, ± 0. Then (X, U A, ) € K. 
i€l x i€I ~ 

(d) Let f: (X,Y) -> (Xf,Yf) be a quotient map *' 

such that f [Y] = Yf. Further let (Xf,Yf) € K, and (X,f~1(xf)) € K 

for each xf € Xf. Then (X,Y) € K. 

' that means f: X -» Xf is surjective and the £•-structure on Xf 

coincides with the final structure with respect to f. 
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Theorem 2: Let E be a (isomorphism-closed) subclass of \0\ m 

Then the following are equivalent: 

(1) E is a relative disconnectedness. 

(2) E =QE . = D r e l C r e l E. 

(3) E is closed under formation of weak subobjects 

and products. 

Remarks: M ) Let us look at the first theorem: 

a) The operator P is a hull operator, i.e. P is 

extensive, isotone and idempotent. 

b) Let K be a subclass of !.£(2)l satisfying (3)(a) 

and (c). Then each C-object may be decomposed into maximal subsets M 

such that (X,M) € K, the so-called K-quasicomponents. Let C be the 

category Top of topological spaces and continuous maps and let 

K = C r e l {D2}, where D 2 is the two-point discrete space. Then the 

K-quasicomponents may be identified with the quasicomponents intro­

duced by HAUSDORPP. 

( 2J Let us look at the second theorem: 

Evidently, QE is the extremal epireflective hull of E. The hull oper­

ator Q is obtained as a composition of the two operators C - and 

Drel wn:Lcn establish a Galois-correspondence between the relative 

connectednesses of |C/2\| and the relative disconnectednesses of |c| 

( i.e.a 1-1-correspondence which converts the inclusion relation )• 

*' in the sensé of [*--• 
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