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SCATTERED SPACES OF POI^IT-COlm,ABLE TYPE 

H. H. WICKE 

J. M. WORRELL, JR. 

Athens, Ohio 

1. Introduction. We announce here a number of results concerning the struct­

ure of a-scattered q-spaces. Part of the interest in such results arises from the 

large number of important counter-examples which are spaces of this kind. We ind­

icate in our exposition how various strengthenings of these conditions affect the 

structure of spaces. Full proofs will be given in an expanded version of this 

paper. There are two aspects of structure which arise: completeness and some sort 

of uniform first-countability such as is exemplified by having a base of countable 

order. One of the earliest results of the type considered is that of Kuratowski [7]: 

Every separable metric scattered space is an absolute G6. Telg&rsky [10] proved 

that every T 2 paracompact first countable scattered space is an absolute G.. The 

authors showed [13] that every ^ first countable scattered space has A-bases hered­

itarily. Both the results of Kuratowski and Telgarsky follow from this result with 

the aid of known theorems. In this paper we obtain results for spaces which are 

a-scattered and satisfy the condition of being of point-countable type or the weak­

er condition of q-space. We also consider the case of a-(closed-and-scattered) 

spaces. The conditions of scattered, a-(closed-and-scattered), and a-scattered 

result in respectively weaker structures on the spaces. 

2. Definitions and terminology. We use w to denote the non-negative inte­

gers. Recall [7] that a topological space X is scattered if and only if X has no 

nonempty dense-in-Itself subspace. A space X is a-scattered (q- (closed-and-scat-? 

tered)) if and only if X = U{5 :n e w},where each S n is scattered (closed-and-

scattered). A space is said to have a base of countable order [1] If and only if 

it has a base <B such that the range of every decreasing sequence < Bn:n e o>>of dis­

tinct sets in (B is a base at all points of f\{ Bn:n e OJ}. A space X has a x-base [12] 

if and only if it has a base & of countable order such that for every decreasing 

sequence < B :n e VOJ> of distinct sets in <B there exists p e X such that every open 

set containing p includes some B . A q-space. [8] is a space X such that for every 

p e X there is a sequence < V :n e u» of neighborhoods of p such that if y n e V n for 

all n e to, then< y :n e o)> has a cluster point. A space X is of point-countable 

type [2] if and only if It is the union of compaot sets of countable character. We 

note that first countable implies point-countable type implies q-space. H e t X b e a 

space and let 9 = <2f :n e o» be a sequence of bases for X. A decreasing represent­

ative of & is a sequence < 0n:n e a» such that for all n e «, G n + 1 c Gn ejfn. Such 

a representative is fixed if rtf Gn'-n e u} * 0- If every fixed decreasing represent­

ative G = < G :n e (o> has the property that If y e G for all n e w implies that 
n " * 
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<<yn.n e OJ> clusters, then X is called monotonically quasi-complete. If X is monoton-

ically quasi-complete and every decreasing representative G of %J has the property 

thatfK G~":n e GO} / 0, then X is called count ably monotonically Cech complete. When 

X is regular, these two concepts are equivalent respectively to the concepts of 

3 -space and A -space defined in [11]. If for every filter base (X. having the proper­

ty that if there is a (fixed) decreasing representative G of J whose range is a sub­

set of the filter generated by &thenft{ A:A e&J ?- 0, then X is called a (monoton-

ic p-space) monotonic fiech complete space. These names are used in the regular 

case in [5] and results there show that what is stated here is an equivalent defin­

ition. In the case where X is regular these correspond respectively to the 3 - and 

A.-spaces of [11]. 

Certain base conditions related to the preceding ones involve well-ordered 

collections of open sets. If Z is a well ordered collection and p e Z, then F(p, Z) 

denotes the first element of Z that contains p. Suppose X is a space and<&T :n e w> 

is a sequence of well ordered open covers of X. If for all p e X, f\{ F(p,2c/~) :n e 00} 

= fa} , X is said to have a primitive diagonal. If for all p e X, { F(p,J£:n e <*,} 

is a local base at p, then X has a primitive base. If for all p e X, every seq­

uence < y:n e o>> such that y e F(p,W*) for all n e to has a cluster point, then X 

is called primitively quasi-complete[15]. If every filter base CL for which some 

tF(p-Wn:n e ^is a subset or the filter generated by d has the property that 

fK A:A e(JL} ?-" 0, then X is said to have a primitive p-structure. For relations 

among these concepts and those of the preceding paragraph and such spaces as 

p-spaces and quasi-complete spaces the reader is referred to [14, 15, and 16]. 

3* Theorems and examples. A basic result enhancing the utility of the re­

sults is the following. 

Theorem 3.1. Every locally a-scattered space is a-scattered. 

An analogue of this result is apparently known for scattered spaces. Because 

of 3.1 we can use the word "locally" in the hypotheses of the theorems which follow. 

Theorem 3.2. Suppose X is a locally scattered T, space. 

(a) If X is first countable, then X has a A-base [13]. 

(b) If X is of point-countable type, then X is monotonically Cech complete. 

If X is also regular, then X is a A^-space. 

(c) If X is a q-space, then X is countably monotonically (5ech complete. 

Theorem 3.3. Suppose X is a locally a-(closed-and-scattered) T, space. 

(a) If points are G fs in X, then X has diagonal a set of interior conden­

sation [14]. 

(b) If X is first countable, then X has a base of countable order. 

(c) If X is regular and of point-countable type, then X is a 3h~space. 

(d) If X is a q-space, then X is monotonically quasi-complete. If X is also 

regular, then X is a 3 -space. 
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Theorem 3.4. Suppose X is a locally a-scattered space. 

(a) If points are G 's in X, then X has a primitive diagonal. 
6 

(b) If X is first countable, then X has a primitive base. 

(c) If X is of point-countable type, then X has a primitive p-structure. 

(d) If X is a q-space, then X is primitively quasi-complete. 

That the classes of scattered, a-scattered, a-(closed-and-scattered) first 

countable T, spaces are distinct is shown by the following examples. 

Example 3-5. The space Q of rationals with the usual topology is a a-(closed-r 

and-scattered) space which is not scattered. It does not have a A-base since it 

does not have the Baire property. 

Example 3.6. The so-called Michael line [9] in which the underlying set is 

the reals with the topology generated by the usual topology and all subsets of the 

irrationals is an example of a a-scattered firstcountable T? paracompact space 

which is not a-(closed-and-scattered).This follows from the fact that it cannot have 

a base of countable order since it is T~ paracompact but not metrizable. 

Remark 3.7. That no stronger property such as being developable or even 

quasi-developable is .implied by being scattered, normal, and first countable is 

shown by the example of a, with the order topology. 

4. Applications. We apply the theorems of Section 3 and some known theorems 

to obtain the following applications. 

Theorem 4.1. Let X be T, locally a-scattered q-space. 

(a) If points are G. fs and X is hereditarily weakly e-refinable [4], then 
0 

X is quasi-developable, 

opable 

(b) If closed sets are Q 's, and X is weakly 6-refinable, then X is devel-
0 

(c) If X is collectionwise normal, closed sets are G 's, and X is weakly 

e-refinable, then X is metrizable. 

Theorem 4.2. Suppose X is a locally a-scattered space such that points are 

G's. Then X has a base of countable order if and only if X is monotonically a 
0 

8-space in the sense of [5]. 

Theorem 4.3. Let X be a locally a-(closed-and-scattered) T, q-space. Then 

if X is e-refinable it is a p-space. 

Theorem 4.4. Let X be a scattered Itychonoff space of point-countable type. 

If X is e-refinably embedded [16] in X, then X is Cech complete. 

Theorem 4.5. Suppose X is a locally countable T-. q-space. Then X has a 

base of countable order. 

REFERENCES 

1. A. V. ArhangePskiiT., Certain metrization theorems, Uspehi Mat. Nauk 18 

(1963) no. 5(113). 139-145 (Russian). 



516 

2. A. V. Arhangel'skij., Bicompact sets and the topology of spaces, Tr. Mosk. 

ObSc7. 13(1965), 3-55. 

3. , On a class of spaces containing all metric and all locally 

bicpipact spaces, Mat. Sb. 67(109) (1965), 55-88. 

4. H. R. Bennett and -D. J. Lutzer, A note on weak e -refinability, Gen. Top. 

and Appl. 2(1972), 49-54. 

5. J. Chaber, On point countable collections and monotonic properties, to ap­

pear. 

b. J. Chaber, M. M. Coban, and K. Nagami, On monotonic generalizations of 

Moore spaces, (Tech complete spaces, and p-spaces, Fund. Math. 84(1974), lo7-119. 

7. K. Kuratowski, Topology I, Academic Press, New York , 1966. 

8. E. Michael, A note on closed maps and compact sets, Israel J. Math. 2(1964) 

173-176. 

9. L. A. Steen and J. A. Seebach, Jr., Counterexamples in topology, Holt, Rine-

hart and Winston, New York, 1970. 

10. R. Telgarsky, Total paracompactness and paracompact dispersed spaces, 

Bull. Acad. Pol. Sci. 16(1968), 567-572. 

11. H. H. Wicke, Open continuous images of certain kinds of M-spaces and com­

pleteness of mappings and spaces, Gen. Top. and Appl. 1(1971), 85-100. 

12. H. H. Wicke and J. M. Worrell, Jr., Open continuous mappings of spaces hav­

ing bases of countable order, Duke Math. J. 34(1967), 255-272. 

13. , Topological completeness of first countable Hausdorff spaces 

I, Fund. Math. 75(1972), 209-§22. 

14. , A characterization of spaces having bases of countable ord­

er in terms of primitive bases, Can. J. Math. 17(1975), 1100-1109. 

15. , Primitive structures in general topology, In Studies in 

topology. Academic Press, New York, 1975, 581-5&9-

16. , The concept of a e-refinable embedding, Gen. Top. and Appl. 

6(1976), 167-181. 

OHIO UNIVERSITY 

ATHENS, OHIO. 


		webmaster@dml.cz
	2012-09-21T10:40:15+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




