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MULTISEQUENCES AND MEASURES
P. KRATOCHVIL
PRAHA

1. Introduction, Recall that a sequential convergence space is a
nonenpty set X provided with a sequential convergence., i, e. certain
sequences in the set X are said to be convergent and each convergent
sequence possesses a unique limit. Constant sequences are convergent
and if a sequence converges to a point, then each subsequence of it
converges to the same point. The closure AZ of a subset Z of X is
the set of all limits of sequences in Z., The power of A is defined

recurrently, N7 =72 and /‘lf Z = E} JL(]L’( Zz) for an ordinal number $O.
If x e A™Z, then there is the smallest f( such that x e AS 2. This
ordinal numnber f is called the order of x with respect to Z . Evi-
dently the order cannot be a limit ordinal number.

Sequential convergence spaces were investigated by J. Novak, who
studied the measure extension problem [6]. He has reformulated an old
idea due to Borel [1]: If Z is a set algebra with a probability mea-
sure, then each Mz isan algebra and A7 is the least 6'-algebra.,
The measure is then extended successively to A7, ?LZZ, ess, and the
transfinite induction is used. However, the outer measure is used. In
this paper, we introduce a notion of a multisequence, which is a gene-
ralization of a double sequence to higher multiplicity. We attempt to
eliminate the outer measure from the mentioned construction, thus com-
pleting the solution of J. Novak,

Borel's idea has been discussed by ILuzin, who affirmed +that
"this idea is as natural as possible" [4].It is still of interest even
for contemporary mathematicians (see e. &. [21. Convergence has been
used in measure extension problems by Savel'jev (see his latest paper
(70).

Acknowledgement. I wish to express my gratitude to prof. J. Névak,

who called my attention to extension problems.

2. Indices,

Denote N:={O, 1, 2, <e.} the set of all natural numbers, S =
= U -{N’n; n € N} the set of all finite sequences of natural numbers
and > = NN the topological power of the topological discrete space N
to the abstract set N . The space > is homeomorphic to the space of
all irrational numbers, For n € N, denote projections pr ¢ > >N, T 2

S —> N and a shift T,: =>Z . Given an element o(=<io,i1,...>e =,
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the values are Prn(OC) = i, T, () := <io,i1,...,in 1~ € N, and
rrn(o() 1= <jgrdqrdprecs™s where Jo—nand deygi= iy for ke N. 1Ina
special case, .’TC‘O(OC) =< >=0¢e0N for all o Z , the wvalue of
51:0(0() being the only element of the power N = {0} .A11 the defined
projections and shifts are continuous. A neighborhood basis of a point
ol € X consists of sets of a form 9t;1[§tn(oc)_’], n e N,

Remark 2.1. (1) The finite subset n = {0, 1, ..., n-1}cN is com-
pact. The theorem of Tychonoff implies compactness of a power Cn=nl\LNN=
= ¥, Therefore the union C = U {Cn; n e N} is a 6 -compzact subset of
.

(2) Mappings of S into N are called edges and mappings of S'=
= U {Nn; n=1,2,...} =S - {O} into N are called incomplete edges.
For an incomplete edge g and a number n e N , denote by g% : S—=> N
an edge that is defined by g™(0) = n and g®(s) = g(s) for s e St.
- For edges f'. and incomplete edges gj, j =1, 2, we shall write f,]i\f2
iff £4(s) < £5(s) for all s e S 2nd gy< g, iff g,l(s) < gz(s) for
all but finite number of s e 3'. If gy< g, ond g5 < 8y, then g4 and
gp are said to be equivalent. Thus.the set of all =2dges is a partially
ordered one and the set of all incomplete edges is A preordered one.
While the former set is directed, each countable subset the latter set
has an upper bound., Moreover, the combinatorial Ilemma of Martin and
Solovay [5] implies the following modification of a result of 3.
Hechler and K., Kunen.

Proposition 2.1, Assume Martin's axiom to be true, let X< c :=
= 2%eand let {Q‘; Lt <2} be a family of incomplete edges. Then there

is an upper bound g e Ns' , 8. < g for each ¢ <22,

Corollary 2.1, There is a cnfinal "in NS' well-ordered chain of
incomplete edges {gt; t< c}, gi< gj for 1< j < c and given an incom-
plete edge g there is (< c¢ such that g < g..

Proof, The Corollary 2.1 is an easy conseguence of Lemms 2.1 and
the principle of the transfinite construction,

For an edge f , denote a subset Z of X by
(1 f = {L;KeX and f(x L) < pry (¢ ) for each n e N} .

The set Zf is called a section., Given f , define l = £(2) and 1 =
= f(<i0’ii"""in-1>)° We see that <igrigsee.> € Zf, i. e Z# 0 for
every edge f .

Lemra 2.1, The family {Z;; f e NS} is 2 basis of a filter in 2,
This filter is called a filter of sections,



239

We omit the =asy proof of Lemms 2.1,

Lemma 2.2. Let g, h be incomplete edges and let hgg. Then
Zg;m < th for all but a finite nunber of m € N,
Proof. The relation g(s) < h(s) is true only for finite number
f seS'. Let Sqs Sor veey B denote 24ll the exceptional elements of
', S 7 <LO, i%ﬂ, oo if:>, r=1,2,...,j.Denocte mozmzlx{ig;rﬂ,2,.,;]}.
ccord*ng to (1), of = «i Q,r '1,.“ tz om impliss i s pro(oé) > p“(%ooc%
g™0) = m. Therefore 7L'n(o() O,l,], <ees i~ is not equal to uny

exceptional element of S' if m > mg,, i. e. h(%et) < g(®/el)  for

= w0

o € Xgmand m > mg. Suppose m > myand o € 2 ., i, e. the condition
in (1) is fulfilled for f = gm., Since hm(O) =m = gm(o),the condition
in (1) is fulfilled for £ = n™

Corollary 2.2. If incomplete edges g, h are equivalent, then
ng: th for all but a finite number of mel ,

and the proof is finished.

3. Multisequences.,
Definition 3.1. Let X be a set and let ® : > —> X.The mapping

® is said to be a multisequence in the set X if @ is a continuous

mapping of 2. into the set X provided with the discrete topology.

Remark ‘3.1. Recall that & (o ) is an isolated point of the dis-
crete space X for each o€ X, The continuity of @ implies the exis-
tence of a neighborhood Unzor;l1[9t'noé} of o such that @[U ] = {6 (¢);
ol € U } is contained in the open set { € ()}, i. e. &) [Un] ={OK)}.

Definition 3.2, Let h(X ) be the least natural number n such
that O [U ]= { ® («£)}. The mapping h : X =N is called the multi-
plicity function of the multisequence @.

Proposition 3.1. A multiplicity function h of a multisequence

® isa multisequence in N .

Proof. It is easy to verify that h[Un]s {n} ={n(x )} for n=h(o)
and U, = :7L‘;11[0Tno(], which proves the Proposition 3.1.

Proposition 3.2. The multiplicity fuanction h' of a multiplicity

function h 1is less than or equal to h .

Proof, Similarly as in the proof of Proposition 3.1., if h[Um]=
= {n} holds for m <n , then ht'(x) < h(). In the opposite case,
ht(o€) = h(x) .

Bxample 3.1. Let Xop = Xg 8 = <, 1'1>61\I2 be a double sequence
in a set X . Define & (o) = x(JC?o() =Xy, for each oC_\l(? yeoe
e 2., The mapping © is constant on each neighborhood U :R‘é (Jc ),
hence it is a multisequence in X . (‘l@arly @LU2]= { x( 7, )} and

@[75{1( TyK)] = {ymn m o= XL, neN} = {x, ion neN} . Therefore the
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multiplicity function h(ot) = 2 for all £eZ if all the points X
are distinct. The multiplicity function of h is identically =zero as
n [7g (@ e)] = n [S]= {2}.

Remark 3.2, Similarly, we can derive a multisequence starting
We identify the sequence and the derived
2 , and we use a phrase " a double

from a simple sequence <%

e

multisequence, e. g. “Xnn~
sequence @ ", etc.

Example 3,2, Let Z be a subset of a sequential convergence
space X (e. g. X = the set of al real functions with pointwise con-
vergence and Z = the subset of all continuous functions) and let
xe/lw‘Z (e. g. x = a Baire measurable function). Denote the order of x
‘with respect to Z in X by 5, Xele, §<wi. If f: 0 , we define
Xp = X, §m= 0 for all m eN ., If §> 0, then there are points o €
e]th Z ,me N, such that x = lim x,. Denote fm the order of X
with respect to 2 , hence §m<f for all me N .,

Now, let m be a fixed number. If fm = 0 , then define X Xm’

fmn= O for each n € N . If fm > 0 , then there are points Xy D€ N,
such that x= lim xp, as n—><=. Denote fmn the order of X hence
fmn< fm for ne€ N and m € N, Write iO instead of m and 11 instead
of n.

Denote fs the order of Xg with respect to Z and suppose that
xg has been defined for each seU{,Nr; r=0,1,...,k} in such a way that

for each r = 0,1,...,k-1 and s =<ig iy eee,i 4>

. . . = 1im x: . .. and
(1) Xloyl1 ,...,lr_1 li.’m loyl1yoaoylr
2 B ? i 1 2 oee > 3 3 3
(2) f f1 f1112 - 510,11,...,11{__1

for each s = <io.i1....,ik_1>éNk , and

(3) any two f!s in (2) can be equal only if they are both zero.

Now, let s = <iO,i1,...,ik_?eNk be given, If fs =0 , then we
define x; vine wyi = Xs and {j_ j =§s for all i € N . If §s> o,
then there are Xio’j'T’"”j'KWIth orders with respect to Z fi g i fs
such that =xg = }?‘,nioxio,i ,...,il;: Thus Xg and fs are defined for all seS
and (1), (2) and (3) are fulfilled for all ke N and se S .

Given ol = <ig,iq,es.> € 2, the sequence f; fi > fi §Z e
of ordinal numbers cannot be strongly descending. Denoté k 2’1\11 the

= 0 . Denote &(ot) = x;

PR §

least number such that in’i vewesiy
and h(o( ) = k . Evidently 3 is a mﬁltisequence in 7Z and

multiplicity function of e

0’ %11 ,...j,_i -1
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Proposition 3.3. If & is a multisequence and C the set in
Remark 2.1, then ®[Z] = @[ C ]. Therefore the complete & -image of
2 ,0[=], is a countable set.

Proof. Let o = <ij, i, eo.>€Z and the multiplicity function
of @ at ot be h(ol ) = k. Define Jpi= i, or j.:=i, according to whether
r < k or not. Denote /3= <Jo» Jqs s>, n = max {io, iy, ...,ik}.Then
O () =0(B) and Be Chif C . Since continuous images of compact
sets Cy are finite, the proof is finished,

Definition 3.3. Let a multisequence @ in X and a natural number
n be given. Define €7 (<) = O ( T o ) for allol€2, The mapping "
is a multisequence in X , It is called a restriction of @& to n .

Definition 3.4, Let M be the set of all multisequences in a
set X . We use the transfinite induction.

(i) define M, = {#;6eM and @ is a constant mapping} and M; =0
if § is a limit ordinal number.
(ii) TLet f > 0 be an ordinal number and let M, be defined for each

7 < § . We shall write ;@ =7 iff OeM, .

Define Mg = {0;6em ,8c U{Mps 7 < § },§ = (sup g ®7) + 1} . Thus
the set Mg is defined for each countable ordinalnﬁumber f.The ordinal
number is called the multiplicity of ©. The following lemma shows
that M =T {Mi s § <yl

Lemma 3.1, The multiplicity‘pe is defined for every multisequence

® ., It can be equal to any countable isolated ordinal number.
_ Proof. If w® is not defined, then there is i, € N such that
C}O.is_not defined, which implies the existence of i, € N such that
m.(@ oyt g not defined, etc. Denote & = <ijy, i4y,...>€ =, k=h@).
Then (k ((...(©°)™...)" = 0, which is a contradiction with the de-
finition of 1ip, i1,, soo o

The multiplicity of ® in Example 3.2 1is equal to f and the
proof of the Lemma 3.1 is finished.

Example 3.3. Given me N, the restriction of the double sequence
from Example 3.1 is a simple sequence <V, Y= ¥ for all n € N, The
multiplicity of a simple sequence is equal to 1 and that of a double
sequence is equal to 2 .,

4. Multisequences in set algebras and the extension of

probability measures.

In this section, we introduce a notion of convergence of multi-
sequences., We show that a quasi-continuous mapping on a subset Z of X
can be extended to A7 . The existence of an extension of a measure
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is a natural consequence.
Definition 4.1. Let @ be a multisequence in the set R of all

real numbers., We define an upper limit

lim sup @ = inf {sup @[=Zr]; f e > },
and a lower limit 1im inf & = - 1im sup (- &), A multisequence & in
R is said to be convergent iff 1lim sup @ = lim inf@ and this common
value is called the limit of & and denoted by lim e .

We identify a subset A of a given setQwith the characteristic
function of A . If @ is a multisequence in the set of all real
functions, we define 1lim sup @ , 1lim inf @ and 1lim @ pointwise,
Thus convergence of multisequences in the algebra (P(2) of all sSubsets
of ) is introduced.

Proposition 4.1. Assume Martin's axiom holds and let & be a

multisequence in a set algebra Z . Then there is a chain <Ai; i<c >
of length c := 2%, 4.5 Aj for i<j, such that A;eX 7 for all i<c
and 1lim sup ®@ =0 {A s i< cl.

Proof. If g e NS is an incomplete edge, recall that gn(0) =
and denote =N{U [ = ,]; nelN} A2z, According to the
Definition 4, 1 11m sup @ =N{ U@[Z A3 neN, ge '}= ﬂﬂ(U@[zn]F
=N {Ag; g € N } Corollary 2.1 1mp11es the existence of a chalnggi,
i < ¢, which is cofinal in the set of all incomplete edges. Since
AgD Ah for g < h , the proof is finished.

If @ : 3 - 7 is a multisequence and P : Z — [0, 1] is a
mapping, then the composition P® : S - [0, 1] of the two continuous
mappings @ and P is a continuous mapping into the interval [0, 1]
provided with the discrete topology.

Lemma 4.1. Let ® be a multisequence in a set algebra 2 and let
P be a probability measure on Z , Then there is a sequence of compact
subsets Kn c> , nelN , such that for each number &€ > O there is a
subseqgence <Lj> of <Kn>, n1<n2<...,LJ = Knj, such that
(4.1.1) P( '(1%1 U @ [Lj] ) = lim sup P@ -¢

J:

V

for each m € N, and

(4.1.2) for each edge f e NS there is j & N such that @ [Lj] c
< @ [Zf]u

An outline of the proof.
(i) If the multiplicity of ® is equal to O, i, e, @ is a constant
mapping, choose an arbitrary element o« € ® and define Kn={o(} for
all n .
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(ii) Assertion . If P(z—zn) <&, 2 , then P(N zn) > Pz - €/2.
n=1

This assertion is a straightforward consequence of De Morgan rules,
z = ﬂzn = U(z - Zn)‘ Let the multiplicity of ® be equal to 1, i. e.
we have a I%imple sequence  <x > (see the Remark %.2),Let £>0 be given,
Put Ag =U x, a =su {pam omwen } and 7 = (lim sup Px - €)/2.
There are'J_z%n Jsuch that an - PAmn < g,2™" for all n. Choose
compact subsets K < 2 such that n proo< s m for all ek . Tet
B, %= U e [Knj' For sufficiently large k we have Px, > lim oap Px -
- €/2. Put z = X, .
for Ln = Kn and the given number €. Now, if & is changed, then put
L_ = K, for a suitable p .
(111) Thg general case. Let the multiplicity of @ be egual to f 1<
< f< wy, and let the Lemma 4.1 hold for every multisequence
with the multiplicity less than f. Thus for each restriction @n,
there is a family {Knm} fulfilling the conditions of the Lemma
4.1, Tet KD :i= T Kmmu Ty npmg oer ¥ Ty, Kpumy s K €N 8 =
= <n1, ceos k> € S5, t = \m1,..., mk> € S .
Similarly as in (ii) it can be verified that {K ; keN,s,teN
is a countable family of compact subsets of > that satlsfies the con-
dition of Lemma 4.1.

The assertion implies that the Lemma 4,1 is true

Ky

Theorem 4.1, Let P Dbe a probability measure on a set algebra Z
and let @ Dbe a multisequence in Z such that .1lim sup ® € 7 . Then
1im sup P @ < P(lim sup @ ).

Proof, Given € > 0, let Ly be such that (4.1.1) and (4.1.2)
holds, i, e. for each edge f there is j &such that A =U @® [Lj]
c L Qm [Zf] =: B, Therefore _ﬂA c ﬂBf- lim sup © and
lim (jQ1 Aj ~ lim sup @ ) = O “Ehe continuity of P implies the exis-
tence of my such that P( f\AJ - lim sup ®) < € , Therefore
P(lim sup @) = lim sup P@ - 2€ and the proof is finished.

Lemma 4.2, Let P : Z—>Y be a mapping of a subset Z of a
sequential convergence space X 1into a sequentially compact space Y.
Then there is a mapping Q :A.w" Z—>7Y, called a quasi-continuous ex-
tension of P, such that : (i) the restriction Qz= P, and (ii) for
each x € A™% with an order f > 0 there are Yy, with orders fn< f >
n € N, such that x = lim y,, Q(x) = lim Qyy).

Once such sequences have been chosen, they are called specialj
for f: 0 we put Yp i X .

Proof, The mapping Q will be constructed by transfinite in-
duction, For f > 0 we choose x € A§'1 Z, x = 1im x_, The sequential

n
compactness of Y implies the existence of a suitable subsequence
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<yn> of <xn>,

Theorem 4,2. Every probability measure on a set algebra Z can
be extended to a pfobability measure Q on the 6 -algebra A4z .,

Prgof. Let Y be the interval [0, 1]. According to Lemma 4.2
there is a quagi-continuous extension Q of P, We shall prove the con-
tinuity of Q at O, The other assertions of Theorem 4,2 are either
easy to prove or they are proved in[6]. So assume Q mnot +to be con-
tinuous at O, There are x, € A7 ,meN, and &€>0 such that O =
= lim x; and Q(xn) >¢& for all m ., For a fixed m and XiEX ,acord-
ing to (ii) of Lemma 4.2, there is a special sequence <y Put X ni=
n+lfor a suitable 1 such that Q(xhn) >€; of course xm 1lim Xn®
© Similarly as in Example 3.2, we comstruct a. multlsequence such that:
lim sup ® =0 and ©O(«) >¢ for all « ¢ = , The 1last relations
imply 1lim sup P® > € , which is a contradiction to Theorem 4.1.

Remark 4,1, Notice that in the proofs of the main statements we
have not used elements outside of the algebra Z , and that is what wé
mean by the phrase "ot using the outer measure",

=
.
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