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MJLTISEQUENCES aND MEASURES 

P. KRATOCHTiL 

PRAHA 

1. Introduction. Recall that a sequential convergence space is a 

nonempty set X provided with a sequential convergence, i. e. certain 

sequences in the set X are said to he convergent and each convergent 

sequence possesses a unique limit. Constant sequences are convergent 

and if a sequence converges to a point, then each subsequence of it 

converges to the same point* The closure A Z of a subset Z of X is 

the set of all limits of sequences in Z. The power of A is defined 

r e c u r r e n t l y , A Z = Z and Jv Z = IV A(A Z) for an ordinal number j>0. 

If x6 A 4Z, then there is the smallest % such that x <= A* Z. This 

ordinal number ^ is called the order of x with respect to Z . Evi

d e n t l y the order cannot be a limit ordinal number* 

Sequential convergence spaces were investigated by J. Novak, who 

studied the measure extension problem [6]. He has reformulated an old 

idea due to Borel [1 ]: If Z is a set algebra with a p r o b a b i l i t y mea

sure, then each A* Z is an algebra and A VZ is the least 6^-algebra. 

The measure is then extended s u c c e s s i v e l y to A Z , A Z, ..., and the 

transfinite induction is used. However, the outer measure is used. In 

this paper, we introduce a notion of a multisequence, which is a gene

ralization of a double sequence to higher m u l t i p l i c i t y . We attempt to 

eliminate the outer measure from the mentioned construction, thus com

pleting the solution of J. Novak. 

Borelfs idea has been discussed by Luzin, who affirmed that 

"this idea is as natural as possible" [4].It is still of interest even 

for contemporary mathematicians (see e« g. [2]). Convergence has been 

used in measure extension problems by SavelTjev (see his latest paper 

[ ? ] ) . 
Acknowledgement. I wish to express my gratitude to prof. J. Novak, 

who called my attention to extension problems., 

2. Indices. 

Denote N:={o, 1, 2, . .„} the set of all natural numbers, S 

= U {N ; n G NJ the set of all finite sequences of natural numbers 

and 51 = N the topological power of the topological discrete space N 

to the abstract set N . The space 51 is homeomorphic to the space of 

all irrational numbers. For n e N, denote projections pr : 51->N,SCn : 

51 -> Nn and a shift T^z Z.->0E1. G-iven an element cd =<i, i ,...>€--El, 
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the values are prn(o6 ) := in, ^n(oC) := <iQ, i1 ,..., i ^ ^ e Nn, and 

rn(o£ ) := <j0,,11,j2, ..•>, where J0= n and 3^: = ifc for k e N. In a 

special case, ttQ(oC ) = < > =- 0 e N for all oC € 5: , the value of 

&Q(OC ) being the only element of the power N = {o} .All the defined 

projections and shifts are continuous. A neighborhood basis of a point 

o 6 e ! consists of sets of a form. 0C~ [ St (oL) ] n e N. 

Remark 2.1. (1) The finite subset n = {0, 1, ..., n-l}cN is com

pact. The theorem of Tychonoff implies compactness of a power C =ncN = 

= 5L . Therefore the union C = U {c ; n e N} is a S'-compact subset of 

T . 
(2) Mappings of S into N are called edges and mappings of S* = 

= U {N ; n=1,2,...} = S - {o} into N are called incomplete edges. 

For an incomplete edge g and a number n e N , denote by gn : 3 -•* N 

an edge that is defined by gn(0) = n and gn(s) = g(s) for s e S1. 

For edges f . and incomplete edges g., j = 1, 2, we shall write f^fp 

iff f-,(s) < f2(s) for all s e, 3 and g ^ g2 iff g^s) <. g2(s) for 

all but finite number of s e 3'. If g^-k gp and g? <. g1 , then g. and 

g2 are said to be equivalent. Thus,the set of all edges is a partially 

ordered one and the set of all incomplete edges is a preordered one. 

While the former set is directed, each countable subset the latter set 

has an upper bound. Moreover, the combinatorial lemma of Martin and 

Solovay [5] implies the following modification of a result of 3. 

Hechler and K. Kunen. 

Proposition 2.1. Assume MartinTs axiom to be true, let x< c : = 

:= 2^°and let {gt ; c < # } "be a family of incomplete edges. Then there 

is an upper bound g € N° , gL <. g for each L < # . 
S T Corollary 2.1. There is a cofinal 'in N well-ordered chain of 

incomplete edges {gL; t< c} , g-< g. for i < j < c and given an incoai-

plete edge g there is c < c such that g <. gL* 

Proof. The Corollary 2.1 is an easy consequence of Lemma 2.1 and 

the principle of the transfinite construction. 

For an edge f , denote a subset 2.f of !E by 

(1) Z f = {cC;oCeH and fiOt^oC) <c prn(o<: ) for each n e N} . 

The set .21- i s cal led a sec t ion . G-iven f , define i~ = f(0) and i = i . 0 v n 
= f ( < i 0 , i - , . . . j . ^ ^ ) . We see tha t <iQ , i 1 , . . .> £ 2EIf, i . e.-£^# 0 for 
every edge f . 

Lemraa 2 . 1 . The family { Z f 5 f ^ i^} i s a bas i s of a f i l t e r in Z . 
This f i l t e r i s ca l led a f i l t e r of sec t ions . 



! , s = < i ^ , i ! j , . . . , i £ > , r= 1 , 2 , . . . , j . D e n o t e ni0=max{ i £; r=1 , 2 , . , j }. 
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W e o m it the e a sy proof of Lemma 2.1. 

Lemma 2.2. Let g, h be incomplete edges and let h<g. Then 

iL^m c 2^ m for all but a finite number of m £ N. 

Proof. The relation g(s) < h(s) is true only for finite number 

of seS 1. Let s,,, s OJ ..., s. denote all the exceptional elements of 
J 

' r~ ̂  0' L 1 ' • • * ' ̂  k '"" jJr" ' > -1 > • • • > J • ̂ '̂llu ''̂  l|Lo 

.According to ( 1 ) , oC = < i Q ,
r i 1, . . 0>£ Z > m implies i Q- prQ(oC ) >- ̂ ^oc)--

=•- g (0) = mw Therefore or(oi) = <iQ, i., ..., i > is not equal to any 

exceptional element of S1 if m > m~, i. e. h(£.jpO < gi^cC) for 

cC e T mand m > m0. Suppose m. > m~ and oC e 2T ̂  i. e. the condition 

in (1) is fulfilled for f = g . Since h (0) = m = g (0),the condition 

in (1) is fulfilled for f = h and the proof is finished. 

Corollary 2.2. if incomplete edges g, h are equivalent, then 

2! m=-E^m for all but a finite number of rneN . 

3. Multisequence s. 

Definition 3»10 Let X be a set and let ® : 51 ->XeThe mapping 

© is said to be a multisequence in the set X if ^ is a continuous 

mapping of 21 into the set X provided with the discrete topology. 

Remark' 3 .1. Recall that (9(oC ) is an isolated point of the dis

crete space X for each oC € 21 . The continuity of 0 implies the exis-

fence of a neighborhood U =£•" [tr oC ] of oC such that @[U ] = {©(<*); & n n L n J L n y 

oC 6 Un} is contained in the open set { 6 (oC )}, i. e. & [U ] ={ 0 (oC)}. 

Definition 3«2. Let h(oC ) be the least natural number n such 

that & [un]= ( ® ( ° O h The mapping h : 21 -> N is called the multi

plicity function of the multisequence ® m 

Proposition 3.1. A multiplicity function h of a multisequence 

& is a multisequence in N . 

Proof. It is easy to verify that h[U ]= {n} ={h(oC )} for n=h(oC ) 
—. -̂  • n 

and U n = ̂ rn [tt^oC], which proves the Proposition 3.1. 

Proposition 3*2. The multiplicity function h! of a multiplicity 

function h is less than or equal to h . 

Proofo Similarly as in the proof of Proposition 3«1., if h[U ]= 

= {n} holds for m < n , then hr(oC ) < h(oC ). In the opposite case, 
h*(oC ) = h(oC ) . 

o 
Example 3.1. Let x = x , s = <m,n>eN , be a double sequence 

in a set X . Define ®(oC) = x(Ot oC) = x. . for each oC =<i i ,. . .> 

£ ^„ The mapping & is constant on each neighborhood U0= Jc '( crc oC) , 

hence it is a multisequence in X . Clearly ®[U0]= { x( J£ oC )} and 
— 1 

© [^ (^i<^)] = {x : m = :*,<* , neN} = {x. ; n a ) . Therefore the 
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multiplicity function h(o£ ) = 2 for all d e Z i f all the points x 

are distinct. The multiplicity function of h is identically zero as 
h [^o1(V*)] = li [21]= {2}. 

Remark 3«2. Similarly, we can derive a multisequence starting 

from a simple sequence <v> . We identify the sequence and the derived 

multisequence, e. g. <x
mri

> ~ ® > a n^ w e u s e a Phrase " a double 

sequence & ff, etc. 

Example 3.2, Let Z he a subset of a sequential convergence 

space X (e. g. X = the set of al real functions with poihtwise con

vergence and Z = the subset of all continuous functions) and let 

xeX Z (e. g. x = a Baire measurable function). Denote the order of x 

with respect to Z in X by ^ , x e A * Z , \ < <o±„ If £ -= 0 , we define 

x = x, i = 0 for all ra £ N • If f > 0, then there are points x e. 

eA* Z , m e N , such that x = lim x m. Denote £ the order of x 

with respect to Z , hence f m< f for all m 6 N . 

Now, let m be a fixed number. If ̂ m = 0 , then define x = x , 

fmn= ° f o r e a c n n 6 N . If fm > 0 , then there are points xffln, n e N , 

such that 5Cm= lim x ^ as n - > ~ o . Denote fmn the order of x , hence 

lnn< fin ̂ o r n e N a n d m € N * Write i o ins'tea^ °^ m a n d i -i instead 

of n. 
Denote f0 the order of x with respect to Z and suppose that 

/S o „ 

x s has heen defined for each seIj{N ; r=0,1,...,k} in such a way that 

for each r = 0,1,... ,k-1 and s = <i Q, i1,..., i ^ ^ 
,> 

(1) x,- І .• = l i m x± < 

(2) í * ЏÍІ^ — > i 
f o r e a c h s = <1Ґ).±4< * • 

•xr 
and 

> i
0
, i

1
, . . . , i

k
_

i 1 

k 
,ik_^>€]\r , and 

(3) any two i#s in (2) can be equal only if they are both zero* 

Now, let s = <io' i1 •••• ̂ k-f* € ̂  b e S i v e n * I f fs
 = ° ' t h e n w e 

define x. , , = x 0 and \± L ± =L for all i, e N . If f > 0, 
i0,i1,. ̂ ,i s )1Q>T###,1k ;s * <• )s c 

then there are x.- ,• •? with orders with respect to Z f. . .< f 
1 o , x V # # # , \ c ^--O^l^-^k )s 

such that Xo = lim x,- A •; • Thus x Q and f are defined for all seS s ik-x>o
 1 o # 1"##*^k s ;s 

and (1), (2). and (3) are fulfilled for all k e N and s ̂  S . 
Given 06 = <i 0, i-j ,.. •>

 £ -̂ - , the sequence I ^ \± ^ \± ± ^ • • • 
of ordinal numbers cannot be strongly descending. Denote k e N the 
least number such that u ± , = 0 . Denote Q(ct) = x. 

;10* 1 , # # # > k-1 10,11 ,###,1k 1 
and h(o£ ) ~ k . Evidently & is a multisequence in Z and h isra 
multiplicity function of & . 
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Proposition 3.3. If ® is a multisequence and C the set in 

Remark 2.1, then & [21] = ®[ C ]. Therefore the complete <9 -image of 

2. , £[5-], is a countable set. 

Proof. Let oC = <iQ, i^, . c.>eland the multiplicity function 

of & at od be h(oC ) = k„ Define j • = i or j :=i, according to whether 
r r r K. 

r < k or not. Denote fi = <j 0, j 1, ##.>, n = max {iQ, i v ...,ik}.Then 
61 (oC ) = 0(/3) and /3 e Gn+f-C . Since continuous images of compact 

sets Cn are finite, the proof is finished. 

Definition 3.3. Let a multisequence 9 in X and a natural number 

n be given. Define 0 (oC ) = 0 ( tr^oC ) for allo^ST. The mapping &n 

is a multisequence in X . It is called a restriction of S to n . 

Definition 3.4. Let M be the set of all multisequences in a 

set X . We use the transfinite induction. 

(i) define MQ = {& ; # £ M and ^ is a constant mapping] and Mc = 0 

if f is a limit ordinal number. 

(ii) Let ( > 0 be an ordinal number and let M* be defined for each 

7 < \ . We shall write /ft 6) = ̂  iff & € M„ . 

Define M| = { 0 ; e 9 € M , ^ e U.{M̂ ; ̂  < f },| = (sup ft 0n) + 1} . Thus 

the set Mc is defined for each countable ordinal number f.The ordinal 

number ft & is called the multiplicity of 0. The following lemma shows 

that M = U {M* ; | < ^ } . 
Lemma 3.1.The multiplicity fc# is defined for every multisequence 

® . It can be equal to any countable isolated ordinal number. 

Proof. If ft ® is not defined, then there is i e N such that 

/it Gr° is not defined, which implies the existence of i^ e N such that 

{*>(& °) * is not defined, etc Denote oC = <iQ, i-|,...>€ 2L , k=h(pO. 

Then (*-((...($ °) v»»») ^ = 0> which is a contradiction with the de

finition of iQ, i-j,. ... . 

The multiplicity of 9 in Example 3.2 is equal to ^ and the 

proof of the Lemma 3.1 is finished. 

Example ?.3. Given m<sN, the restriction of the double sequence 

from Example 3.1 is a simple sequence <y>- y = x for all n <= N. The 

multiplicity of a simple sequence is equal to 1 and that of a double 

sequence is equal to 2 . 

4. Multisequences in set algebras and the extension of 

probability measures. 

In this section, we introduce a notion of convergence of multi-

sequences. We show that a quasi-continuous mapping on a subset Z of X 

can be extended to A**1 Z . The existence of an extension of a measure 
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is a natural consequence. 

Definition 4.1. Let @ be a multisequence in the set R of all 

real numbers. We define an upper limit 
o 

lim sup ® = inf {sup Q [-£"f ] ; f e. N° } , 
and a lower limit lim inf Q - - lim sup (-0). A multisequence 6 in 

R is said to be convergent iff lim sup & = lim inf® and this common 

value is called the limit of 0 and denoted by lim & . 

We identify a subset A of a given set£1 with the characteristic 

function of A . If & is a multisequence in the set of all real 

functions, we define lim sup & , lim inf & and lim © pointwise. 

Thus convergence • of multisequences in the algebra (P{££) of all subsets 

of il is introduced. 

Proposition 4.1. Assume Martin1s axiom holds and let & be a 

multisequence in a set algebra Z . Then there is a chain <^j} i < c > 

of length c := 2Ko , A ^ A . for K j , such that A±eJ\
2Z for all i<c 

and lim sup 0 = C\ {AjL; i < c}. 

Proof. If g - Is' is an incomplete edge, recall that gn(0) = n 

and denote A := 0 { U 0 [ Z n ] ; neN} £ A2 Z «, According to the 

Definition 4.1 lim sup 0 = n { U0[IffJ; n e N, g e 3̂ }= nn(U0[XJ) = 
( Q i. & g n g 

= (1 lA ; g € N }. Corollary 2.1 implies the existence of a chain g., 

i < c, which is cofinal in the set of all incomplete edges. Since 

A^ 3 A, for g < h , the proof is finished. 

If & : IE -> Z is a multisequence and P : Z -> [0, 1] is a 

mapping, then the composition P <9 : SI -> [0, 1 ] of the two continuous 

mappings Q and P is a continuous mapping into the interval [0, 1] 

provided with the discrete topology. 

Lemma 4.1. Let Q be a milltisequence in a set algebra Z and let 

P be a probability measure on Z „ Then there is a sequence of compact 

n e N , such that for each number £ > 0 there is a 

<Kn>, n^<n2<...,L. = Kn , such that 

m ^ 
P( H U © [L.] ) ̂  lim sup P0 - £ 

3 = 1 d 

(4.1.2) for each edge f e N S there is j ̂  N such that © [L.] c 

subsets K c 21 , n 
subs eqence < ъ f of 

(4.1 . 1 ) 

for each m є. N, and 

c é> [2ľf], 
з-

An outline of the proof, 

(i) If the multiplicity of S is equal to 0, i, e, 0 is a constant 

mapping, choose an arbitrary element c£ e ® and define K ={oC} for 

all n . 
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(ii) Assertion . If P(z-z ) < £ . 2~ , then P( f) z J ^ Pz - e/2. 
11 n=1 

This assertion is a straightforward consequence of De Morgan rules, 
z Z n z - U (z - zn)» ^et "^

n8 multiplicity of 0 "be equal, to 1, i. e„ 

we have a simple sequence <x > (see the Remark 3.2).Let £>0 he given. 

Put A m = U x., a = sup {PAm; m e N } and r; --- (lim sup Px, - e)/2. 

There areD~mn such that an - PA
m]1 < £ . 2*"n~1 for all n . Choose 

compact subsets K c 51 such that n < vr^oC ^ m for all oCeK . Let 
n ^ 0 n n 

z := U 0 [K 1. For sufficiently large k we have Px > lim sup Px -

- £/2. Put z = x . The assertion implies that the Lemma 4.1 is true 

for L = K and the given number £ . Now, if £ is changed, then put 

L . = K . for a suitable p . 

(iii) The general case. Let the multiplicity of ® be equal to t , 1 < 

< j < CO., and let the Lemma 4.1 hold for every multisequence 

with the multiplicity less than f . Thus for each restriction 6^, 

there is a family (Knm} fulfilling the conditions of the Lemma 

4 . 1 . Let K^ : = r K m u r K u . . . u T K , k € N, s = 
s n, n^m^ wn2

 n2fli2 nk n km k ' ' 
= <n1, ..«, nk> € s, t = <m1,..., mfc> £ S . 
Similarly as in (ii) it can be verified that {K ; keN,s,teN } 

s 

is a countable family of compact subsets of X. that satisfies the con

dition of Lemma 4.1. 

Theorem 4.1. Let P be a probability measure on a set algebra Z 

and let Q be a multisequence in Z such that . lim sup 6 € Z . Then 

lim sup P G <. P(lim sup ® ). 

Proof. Given £ > 0, let L. be such that (4.1.1) and (4.1.2) 

holds, i. e. for each edge f there is j such that A .:= U @ [ L . ] 

c U & [21J =: B~ Therefore O A - C Q B ^ lim sup© and 
m f f i=1 J f 1 

lim ( JT\ A . - lim sup 0 ) = 0. The continuity of P implies the exis-
m 3 = 1 J /mo ^ N 

tence of m.Q such that P( H A . - lim sup (y ) < £ . Therefore 

P(lim sup ®) >. lim sup P © - 2£ and the proof is finished. 

Lemma 4.2. Let P : Z -> Y be a mapping of a subset Z of a 

sequential convergence space X into a sequentially compact space Y. 

Then there is a mapping Q : A Z -> Y, called a quasi-continuous ex

tension of P, such that : (i) the restriction Qjz= P, and (ii) for 

each x € A 4 Z with an order ^ > 0 there are y n with orders fn< j , 

n € N, such that x = lim yn, Q(x) = lim Q(yn). 

Once such sequences have been chosen, they are called special; 

for ^ = 0 we put y n := x • 

Proof. The mapping Q will be constructed by transfinite in-

duction. For | > 0 we choose x € A Z, x = lim x . The sequential 
compactness of Y implies the existence of a suitable subsequence 
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<yn> of <v>. 
(Theorem 4.2. Every probability measure on a set algebra Z can 

be extended to a probability measure Q on the & -algebra X*Z . 

Proof. Let Y be the interval [0, 1]. According to Lemma 4.2, 

there is a quasi-continuous extension Q of P. We shall prove the con

tinuity of Q at 0. The other assertions of Theorem 4.2 are either 

easy to prove or they are proved in[6]. So assume Q not to be con

tinuous at 0. There are x m e Af^Z , m e N, and £>0 such that 0 = 

= lim x m and Q(xm) > £ for all m . .For a fixed m and x:,=x ,acord-

ing to (ii) of Lemma 4.2, there is a special sequence <y >. Put x := 

:= y n +i
f o r a suitable 1 such that Qfx^,) >£ ; of course x = lim x . 

Similarly as in Example 3.2, we construct a multisequence such that 

lim sup 0 = 0 and 0 (<* ) > £ for all oC € 51 . The last relations 

imply lim sup P ® "£ £ , which is a contradiction to Theorem 4.1. 

Remark 4.1* Notice that in the proofs of the main statements we 

have not used elements outside of the algebra Z , and that is what we 

mean by the phrase "not using the outer measureff. 
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