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CATEGORIES OF CONTINUOUS FUNCTION SPACES 

W. GOVAERTS *) 

Gent 

A topological universal algebra E is said to be sufficiently 

complicated iff it is a Hausdorff algebra such that each character 

C(X,E)-»E is an evaluation whenever X is an E-compact space. Then there 

is a categorical dual equivalence between the category T C P E of all 

E-compact spaces and the category CFj: of all universal algebras C(X,E) 

with X an arbitrary, not necessarily E-compact, topological space. 

We obtain a new sufficiently complicated structure Zm that will be 

used as an illuminating example in a general (though introductory!) 

study of the categories CF^. This exposition has been influenced mainly 

by P. Brucker [ 1] , [ 2] ,[ 3] and by P.R. Halmos [9]. Categorical notions 

not recalled in the text are taken from Z. Semandeni [ 1 0 ] , Chapter III. 

An object A of a category A is projective iff for each epimorphism 

a:B->C and morphism $:A-*C there is a morphism Y:A->B such that aY = 3; 

injective objects are defined dually. 

A Hausdorff space E is of compact regularity type iff there exists 

a compact space E c such that the classes T C R E and T C R E C of E-complete 

regularity and E c-complete regularity respectively, are identical. Each 

zerodimensional space is of compact regularity type (E c = finite discrete 

space), as is each completely regular space that contains a nonconstant 

continuous image of a real interval (Ec = a compact real interval). All 

sufficiently complicated structures in our knowledge have a compact 

regularity type. 

1. The structure Z^ 

Let Zoo=ZU{oo} be the one-point compacti fi cation of Z; clearly Z^ 
is a zerodimensional compact Hausdorff space so that TCP2oo coincides 

with TCPp 2 where D 2 is a two-point discrete space. Zm will be provided 

with addition, multiplication^and constant unary mapping onto 1, 

according to the following supplementary rules 

) "Aspirant" of the Belgian "Nationaal Fonds voor Wetenschappelijk 

Onderzoek" 



143 
z+oo=oo+z = oo+oo=oo f o r a l l zc-2 

z .00=00. z=00.00=00 f o r a l l z c z , z^O 

0 . o o = o o . 0 = 0 

These operations are continuous and {0,oo}+j# is isomorphic to the 

two-point discrete lattice D 2 = { 0 , l } y > A . An elementary proof now shows 

that z^ is sufficiently complicated; in fact we obtain a little more : 

Theorem 1 : Let XeTCPz and D a subset of C(X,Zoo) that satisfies 
00 

(i) All characteristic functions xy of clopen (open-and-closed) 

subsets U of X belong to D. 

(ii) D is closed under + and . . 

(iii) If f,geD and g(X)cz, then there is a keD with f=g+k. 

Let H:D->Zoo be a morphism for + and . such that H(D)£{Q*«>}; then H is 

the evaluation in a point of X. 

Proof : (1) There is a point x0eX such that f(x0)=0 whenever 

feD and H(f)=0. Indeed, otherwise we could find for each xeX a neigh

borhood Ux of x and a fxeD such that H(fx)=0 and fx differs from 0 

on U x. Let xi,...xn be chosen so that XcUxi^...uUXn and set f=f|x+...fxn» 

then H(f)=0 and f(x)*0 for all xeX. If geD is arbitrary, then 

0 = H(f)=H(f).H(oo)=H(f.oo)=H(oo) = H(g+oo)=H(g) + H(oo)=H(g) , so that H would be 

identically zero. 

(2) H(z)=z for all zez. Indeed, choose g such that H(g)£{0,oo}, 

then from H(g)=H(1).H(g) we infer H(l)=l; the general result follows 

from additivity properties of H. 

(3) Whenever feD and H(f)ez, then f(x 0)=H(f). By (iii) we can name

ly choose geD such that f=g+H(f) so that H(f)=H(g)+H(H(f))=H(g)+H(f) by 

(2). Since H(g)=0 and thus g(x0)=0 we obtain f(x 0)=H(f). 

(4) If fe-D and H(f)=oo, then there is an xeX with f(x)=°°. Suppose 

H(f)=~, f(X)cz. Then we may find z l 9...z ncz and clopen subsets 

VJi,...Un in X with f=x\Ji • --i+- • -+Xyn--n-
 L e t ie{l,...n> be such that 

HU\j^)=0°- Theu- ^=H(l)=H(xu1)
+H(xx\Ut)=Q0> a contradiction. 

(5) If feD, then H(f)=f(xo). By (3) we may assume H(f) = °°. Suppose 

xo£S=txeX:f (x) = «>). There is a clopen UcX such that x 0eU and Uns=j6. 

Then H(~. xu)=~ by (3) while oo=H(f. Xy)+H(f. xx\ U) so that H(f. xx\ u) = 0° 

by (4). So °°=«>. oo=H(oo. Xy) .H(f. xx\u)
=H(0)=0, which is again a contradic

tion. 

Proposition 1 : Zoo is a retract of 2 N (N={ 1,2,3 ,. . .}) 

Proof: For convenience we replace % by its homeomorphic copy 
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#«,--{ 1,2,3,. . .}u{oo} . Mappings f:Nm^zH and g ^ ^ N * , are defined by 

[f(i)I(j)=0 whenever i<« and jVi 

[f(i)l(j):=l whenever i<°o and j = i 

[f(-)l (j)=0 for all j 

and g(a)=i<oo whenever a(j)=0 for j<i and a(i)=l 

g(a)=<» whenever a(j)=0 for all j 

Then f and g are continuous and g°f=l# . 

2. General properties of C F E 

Theorem 2 : If E is sufficiently complicated, then C F E is complete 

and cocomplete.Furthermore, for each cardinal number m there is an 

m-free object, namely C(E m,E);the projections form a set of free 

generators. In C F E each object is the epimorphic image of a free object. 

Proofs : It may be shown without difficulty that T C P E is complete 

and cocomplete (the completeness is wery trivial) so that by duality 

C F E has the same properties. The second assertion is easily verified 

(cfr. also P. Brucker [31, 4.1); the third is an immediate consequence. 

Theorem 3 : If E is sufficiently complicated, then in C F E each 

monomorphism is one-to-one. Furthermore, the following conditions are 

equi valent. 

(a) Each epimorphism in C F E is onto 

(3) E is an injective object in T C P E 

( Y ) Conditions (x) and (xx) hold : 

(x) : If (X,t)eTCP£, ( X , U ) G T C R E , t>u, then t=u (where (X,t) is the set 

X, provided with topology t) 

(xx): If AcB and A , B G T C P E , then A is E-embedded in B. 

Proofs : Since C F E has a 1-free object, each monomorphism in CF E 

is one-to-one. A routine inspection will show the equivalence of (a)» 

( 3 ) , ( Y ) . 

Lemma 1 : Let E be a T 2-space. Suppose (X,t)eTCRE has the property 

(P) Whenever ( X , U ) G T C R E and u<t, then u=t 

Then (X,t) is closed in each embedding in a E-completely regular space. 

Proof : Let (Y,u')eTCRE and <|>: (X ,t)-> (Y ,u') determine a homeomor-

phism of (X,t) with (<j>(X),u) where u is the relative topology of u'. 

If <j>(X) is not closed in (Y,u") we choose xQel^JTj\ <!>(X) and y0e<t>(x) (X 
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may be assumed nonempty). Let u'0 be the weak topology induced on Y by 

all f0eC((Y,u'),E) that are equal in x0 and y 0 and let u0 be the 

relative topology on <j>(X). Then (<f>(X) , u0)eTCR£ and u0<u. The proof 

is now completed by showing uo^u. 

Let feC((Y,u') ,E) be such that f(x 0)*f(y 0); U0 and U*0 will denote 

disjoint open neighborhoods of f(y0)and f(x 0) respectively; so f^fllo) 

and f'^U'o) are disjoint open u'-nei ghborhoods of y 0 and x 0; hence yQ 

does not belong to the u-closure of f" * (U ' 0)n<j>(X) . On the other hand 

y 0 clearly belongs to the u0-closure of that set, so u^u0. 

Lemma 2 : Let E be a T2-space of compact regularity type, (X,t)eTCRf;. 

The following are equivalent : 

(1) If (X,u)eTCRE and u<t, then u=t 

(2) X is closed in each embedding in an E-completely regular space 

(3) X is compact 

Proofs : Lemma 1 gives (1)=»(2). Since X may be homeomorphi cal ly 

embedded in a compact, E-completely regular space, (2)=»(3) holds true. 

Finally (3)=>(1) is obvious. 

Proposition 2 : Let E be sufficiently complicated. If E is compact, 

then condition (x) holds. Conversely, if it holds, then E is at least 

countably compact. If E has a compact regularity type, then (x) holds 

if and only if E is compact. 

Proofs : The first assertion is obvious. On the other hand, if E 

is not countably compact, then it contains a countable infinite discrete 

closed subset, so that zeTCP E. Also, z00eTCPo2cTCPE. Since Z is not 

compact, a contradiction with (x) arises from the existence of a one-to-

one mapping from z onto Zoo. 

Finally, the last part of proposition 2 follows from lemma 2. 

In view of proposition 2, it is natural to ask whether (xx) holds 

for each compact space E. As a counterexample, set E = [0,1]u[ 2,3] 

(usual topology), A={0,1}, B=[0,1]. Then both A, B are E-compact and 

A is not E-embedded in B. (A similar situation always occurs when E 

is neither connected nor totally disconnected!). Nevertheless, most 

interesting sufficiently complicated compact algebras satisfy (xx). 

We need a simple categorical fact. 
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Proposition 3 : Let A,B,C,D be topological spaces, A£B, D a 

retract of C. If A is C-embedded in B, then A is D-embedded in B. 

(proof obvious) 

Theorem 4 : If E is one of the structures I=[0,1], D 2={0,1} or 

Z^, then each epimorphism in C F E is onto. 

Proofs : From [41 , 3.11(c) we know that a compact subset of a 

completely regular space is ^-embedded in it. Since I is a retract of 

R, the result holds in case 10,1]. It is easily seen that each compact 

subset of a zerodimensional compact space is D 2-embedded in it; this 

establishes the case D 2. The case Z^ now follows from the preceding 

one and propositions 1 and 3. 

3. Injective and projective elements in CF E 

Proposition 4 : Let E be an arbitrary Hausdorff space. Then in 

TCP E all monomorphisms are one-to-one. If we consider the assertions 

(a) : E is an ss-space 

(3) : Each epimorphism in TCP E is onto a dense subset of its codomain 

(Y) : Each E-compact space is E-maximal 

Then (a) implies (3) and (3) implies ( Y ) . 

Proof : The notion of an ss-space is discussed in [ 8 ] ; for E-

maximal spaces we refer to [7]. Since T C P E contains 1-free objects, 

all monomorphisms are one-to-one. Now 

(a)=>(3) : If A,BeTCP E, feC(A.B), TTT7*B then for x e B X T P T we may find 

n>l, geC(B,E n) and open G£E n such that g(x)eG and g(f(A))nG=jtf. 

By hypothesis there are <j>, i|/eC(En,E) that are equal on g(f (A)) 

but differ in g(x) so that <t>°g°f equals ^°§°f though <f>°g differs 

from ijjog. 

(3)=*(Y) : L e t AeTCP E, A 0 its E-maxirnal extension, i:A->A0 the 

natural embedding. Then i is an epimorphism, so that ^=A 0; this is 

possible only i f A=A 0. 

Theorem 5 : If E is a sufficiently complicated space, then the 

singleton element is an injective object in C F E . Furthermore : 

(a) If there is a nonsingleton injective object in CF E, then E is 

countably compact 
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(a)' If E is of compact regularity type andthere is such an object 

in C F E , then E is compact 

(b) Conversely, if E is a compact ss-space, then C F E contains 

n o n s i n g l e t o n injective objects. 

(c) If E is compact and there is at least one nonsingleton injective 

object in C F E , then the injective objects are just the structures 

C(X,E) where X is an extremely disconnected compact Hausdorff space. 

Proofs : (a) If there is a nonsingleton injective object in C F E , 

then each epimorphism in T C P E d e a r l y needs to be onto. Now, if E is 

not countably compact, then z is E-compact. But Z is a dense subspace 

of its one. poi nt-compacti fi cation that, too, belongs to TCPjr. 

(a') : This follows from lemma 2, part (2)->(3) 

(b) : If E is a compact ss-space, then each epimorphism in T C P E is 

onto. An application of [ 5] , theorem 2.5 completes the proof. 

(c) : Again, each epimorphism in T C P E is onto, so that the result 

follows from [5], theorems 1.2 and 2.5. 

The projective objects in C F E are not easily character!* zabl e. 

We know, however, some partial results : 

Theorem 6 : If E is sufficiently complicated, then in C F E 

(a)A projective object is a retract of a free object 

(b) A free object with at least one generator is projective iff each 

epimorphism in C F E is onto; if so, all free objects are projective and 

the projective objects are just the retracts of the free objects. 

(c) The free object without generators is projective. 

If E is not countably compact, it is the only projective object. 

(d) Even if the 0-free object is the only free projective object, 

there may be other projective objects 

Proofs : (a) From theorem 2 we know that each object is the 

epimorphic image of a free object. By projectivity, it is a retract. 

(b) From theorem 3 we know that each epimorphism in 

C F E is onto iff E is injective in T C P E - N O W for each m>0, E is 

injective iff E m is injective. Furthermore, a retract of a projective 

object is projective. 

(c) The first assertion is obvious. If E is not countably 

compact, z and z m both belong to T C P E an(* z is a dense subset of Z , 

not D 2-embedded in it; since D 2 is a closed subspace of each nonempty 

nonsingleton element of TCPE the result foilows. 
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(d) As for an example, set E=[ 0,1]u[ 2,3] . From the remarks 

preceding proposition 3 we know that not ewery epimorphism in C F E is 

onto; so the 0-free object is the only free projective object. On the 

other hand,[0,1] belongs to TCP^ and is an injective object of that 

category, (this example is somewhat artificial since as far as we know 

[0,l]u[2,3] has no interesting sufficiently complicated structure; 

from a purely theoretical point of view however, such a structure is 

defi nable; cfr. [ 8] ) 
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