W. Govaerts Categories of continuous function spaces

In: Josef Novák (ed.): General topology and its relations to modern analysis and algebra IV, Proceedings of the fourth Prague topological symposium, 1976, Part B: Contributed Papers. Society of Czechoslovak Mathematicians and Physicist, Praha, 1977. pp. 142--148.

Persistent URL: http://dml.cz/dmlcz/700681

Terms of use:

© Society of Czechoslovak Mathematicians and Physicist, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

CATEGORIES OF CONTINUOUS FUNCTION SPACES W. GOVAERTS *) Gent

A topological universal algebra E is said to be sufficiently complicated iff it is a Hausdorff algebra such that each character $C(X,E) \rightarrow E$ is an evaluation whenever X is an E-compact space. Then there is a categorical dual equivalence between the category TCP_E of all E-compact spaces and the category CF_E of all universal algebras C(X,E)with X an arbitrary, not necessarily E-compact, topological space.

We obtain a new sufficiently complicated structure Z_{∞} that will be used as an illuminating example in a general (though introductory!) study of the categories CF_E. This exposition has been influenced mainly by P. Brucker [1], [2],[3] and by P.R. Halmos [9]. Categorical notions not recalled in the text are taken from Z. Semandeni [10], Chapter III.

An object A of a category \mathcal{A} is projective iff for each epimorphism $\alpha: B \rightarrow C$ and morphism $\beta: A \rightarrow C$ there is a morphism $\gamma: A \rightarrow B$ such that $\alpha \gamma = \beta$; injective objects are defined dually.

A Hausdorff space E is of compact regularity type iff there exists a compact space E_C such that the classes TCR_E and TCR_E_C of E-complete regularity and E_C -complete regularity respectively, are identical. Each zerodimensional space is of compact regularity type (E_C = finite discrete space), as is each completely regular space that contains a nonconstant continuous image of a real interval (E_C = a compact real interval). All sufficiently complicated structures in our knowledge have a compact regularity type.

1. The structure Z_{∞}

Let $Z_{\infty}=Z\cup\{\infty\}$ be the one-point compactification of Z; clearly Z_{∞} is a zerodimensional compact Hausdorff space so that $\text{TCP}_{Z_{\infty}}$ coincides with TCP_{D_2} where D_2 is a two-point discrete space. Z_{∞} will be provided with addition, multiplication and constant unary mapping onto 1, according to the following supplementary rules

^{*) &}quot;Aspirant" of the Belgian "Nationaal Fonds voor Wetenschappelijk Onderzoek"

```
143
```

```
z_{+\infty}=\infty+z=\infty+\infty=\infty for all z\in\mathbb{Z}
z_{\infty}=\infty, z=\infty, \infty=\infty for all z\in\mathbb{Z}, z\neq 0
0, \infty=\infty, 0=0
```

These operations are continuous and $\{0,\infty\}_{+,.}$ is isomorphic to the two-point discrete lattice $D_2=\{0,1\}_{v,,\wedge}$. An elementary proof now shows that Z_{∞} is sufficiently complicated; in fact we obtain a little more :

<u>Theorem 1</u>: Let $X \in TCP_{Z_{\infty}}$ and D a subset of $C(X, Z_{\infty})$ that satisfies (i) All characteristic functions x_U of clopen (open-and-closed) subsets U of X belong to D.

(ii) D is closed under + and . .

(iii) If $f,g\in D$ and $g(X)\subseteq Z$, then there is a $k\in D$ with f=g+k. Let $H:D\to Z_{\infty}$ be a morphism for + and . such that $H(D)\not\leq \{0,\infty\}$; then H is the evaluation in a point of X.

<u>Proof</u>: (1) There is a point $x_0 \in X$ such that $f(x_0)=0$ whenever $f \in D$ and H(f)=0. Indeed, otherwise we could find for each $x \in X$ a neighborhood U_X of x and a $f_X \in D$ such that $H(f_X)=0$ and f_X differs from 0 on U_X . Let $x_1, \ldots x_n$ be chosen so that $X \subseteq U_{X_1} \cup \ldots \cup U_{X_n}$ and set $f = f_{X_1}^2 + \ldots + f_{X_n}^2$,

then H(f)=0 and $f(x)\neq 0$ for all x∈X. If g∈D is arbitrary, then 0=H(f)=H(f). $H(\infty)=H(f.\infty)=H(\infty)=H(g+\infty)=H(g)+H(\infty)=H(g)$, so that H would be identically zero.

(2) H(z)=z for all $z\in\mathbb{Z}$. Indeed, choose g such that $H(g)\notin\{0,\infty\}$, then from H(g)=H(1). H(g) we infer H(1)=1; the general result follows from additivity properties of H.

(3) Whenever $f \in D$ and $H(f) \in \mathbb{Z}$, then $f(x_0) = H(f)$. By (iii) we can namely choose $g \in D$ such that f = g + H(f) so that H(f) = H(g) + H(H(f)) = H(g) + H(f) by (2). Since H(g) = 0 and thus $g(x_0) = 0$ we obtain $f(x_0) = H(f)$.

(4) If $f \in D$ and $H(f) = \infty$, then there is an $x \in X$ with $f(x) = \infty$. Suppose $H(f) = \infty$, $f(X) \subseteq \mathbb{Z}$. Then we may find $z_1, \ldots z_n \in \mathbb{Z}$ and clopen subsets $U_1, \ldots U_n$ in X with $f = \chi_{U_1}, z_1 + \ldots + \chi_{U_n} z_n$. Let $i \in \{1, \ldots, n\}$ be such that $H(\chi_{U_1}) = \infty$. Then $1 = H(1) = H(\chi_{U_1}) + H(\chi_X \setminus U_1) = \infty$, a contradiction.

(5) If f=D, then H(f)=f(x₀). By (3) we may assume H(f)= ∞ . Suppose $x_0 \notin S = \{x \in X: f(x) = \infty\}$. There is a clopen U_X such that $x_0 \in U$ and U $\cap S = \emptyset$. Then H(∞, x_U)= ∞ by (3) while $\infty = H(f, x_U) + H(f, x_X \setminus U)$ so that H(f, $x_X \setminus U$)= ∞ by (4). So $\infty = \infty, \infty = H(\infty, x_U)$. H(f, $x_X \setminus U$)=H(O)=O, which is again à contradiction.

<u>Proposition 1</u> : Z_{∞} is a retract of $2^{\mathbb{N}}$ (N={1,2,3,...}) <u>Proof</u>: For convenience we replace Z_{∞} by its homeomorphic copy $N_{\infty} = \{1, 2, 3, \ldots\} \cup \{\infty\}$. Mappings $f: N_{\infty} \rightarrow 2^{N}$ and $g: 2^{N} \rightarrow N_{\infty}$ are defined by [f(i)](j) = 0 whenever $i < \infty$ and $j \neq i$ [f(i)](j) = 1 whenever $i < \infty$ and j = i $[f(\infty)](j) = 0$ for all j and $g(a) = i < \infty$ whenever a(j) = 0 for j < i and a(i) = 1 $g(a) = \infty$ whenever a(j) = 0 for all j Then f and g are continuous and $g \circ f = \mathbf{1}_{N_{\infty}}$.

2. General properties of CF_E

<u>Theorem 2</u> : If E is sufficiently complicated, then CF_E is complete and cocomplete.Furthermore, for each cardinal number m there is an m-free object, namely $C(E^m,E)$; the projections form a set of free generators. In CFF each object is the epimorphic image of a free object.

<u>Proofs</u> : It may be shown without difficulty that TCP_E is complete and cocomplete (the completeness is very trivial) so that by duality CF_E has the same properties. The second assertion is easily verified (cfr. also P. Brucker [3], 4.1); the third is an immediate consequence.

<u>Theorem 3</u> : If E is sufficiently complicated, then in CF_E each monomorphism is one-to-one. Furthermore, the following conditions are equivalent.

 (α) Each epimorphism in CF_E is onto

(β) E is an injective object in TCP_E

 (γ) Conditions (x) and (xx) hold :

(*) : If $(X,t)\in TCP_E$, $(X,u)\in TCR_E$, $t \ge u$, then t=u (where (X,t) is the set X, provided with topology t)

(**): If $A \subseteq B$ and $A, B \in TCPE$, then A is E-embedded in B.

<u>Proofs</u>: Since CF_E has a 1-free object, each monomorphism in CF_E is one-to-one. A routine inspection will show the equivalence of (α) , (β) , (γ) .

<u>Lemma 1</u>: Let E be a T_2 -space. Suppose $(X,t) \in TCR_E$ has the property (P) Whenever $(X,u) \in TCR_E$ and $u \leq t$, then u = t

Then (X,t) is closed in each embedding in a E-completely regular space. <u>Proof</u> : Let $(Y,u') \in TCR_E$ and $\phi: (X,t) \rightarrow (Y,u')$ determine a homeomor-

phism of (X,t) with $(\phi(X),u)$ where u is the relative topology of u'. If $\phi(X)$ is not closed in (Y,u') we choose $x_0 \in \overline{\phi(X)} \setminus \phi(X)$ and $y_0 \in \phi(X)$ (X

144

may be assumed nonempty). Let u'_0 be the weak topology induced on Y by all $f_0 \in C((Y, u'), E)$ that are equal in x_0 and y_0 and let u_0 be the relative topology on $\phi(X)$. Then $(\phi(X), u_0) \in TCR_E$ and $u_0 \leq u$. The proof is now completed by showing $u_0 \neq u$.

Let $f \in C((Y, u'), E)$ be such that $f(x_0) \neq f(y_0)$; U_0 and U'_0 will denote disjoint open neighborhoods of $f(y_0)$ and $f(x_0)$ respectively; so $f^{-1}(U_0)$ and $f^{-1}(U'_0)$ are disjoint open u'-neighborhoods of y_0 and x_0 ; hence y_0 does not belong to the u-closure of $f^{-1}(U'_0) \cap \phi(X)$. On the other hand y_0 clearly belongs to the u_0 -closure of that set, so $u \neq u_0$.

<u>Lemma 2</u> : Let E be a T_2 -space of compact regularity type, $(X,t) \in TCR_E$. The following are equivalent :

(1) If $(X,u) \in TCRE$ and $u \leq t$, then u=t

(2) X is closed in each embedding in an E-completely regular space(3) X is compact

<u>Proofs</u> : Lemma 1 gives $(1)\Rightarrow(2)$. Since X may be homeomorphically embedded in a compact, E-completely regular space, $(2)\Rightarrow(3)$ holds true. Finally $(3)\Rightarrow(1)$ is obvious.

<u>Proposition 2</u>: Let E be sufficiently complicated. If E is compact, then condition (x) holds. Conversely, if it holds, then E is at least countably compact. If E has a compact regularity type, then (x) holds if and only if E is compact.

<u>Proofs</u>: The first assertion is obvious. On the other hand, if E is not countably compact, then it contains a countable infinite discrete closed subset, so that $z\in TCP_E$. Also, $Z_{\infty}\in TCP_D_2\subseteq TCP_E$. Since Z is not compact, a contradiction with (*) arises from the existence of a one-toone mapping from Z onto Z_{∞} .

Finally, the last part of proposition 2 follows from lemma 2.

In view of proposition 2, it is natural to ask whether (**) holds for each compact space E. As a counterexample, set $E=[0,1]\cup[2,3]$ (usual topology), $A=\{0,1\}$, B=[0,1]. Then both A, B are E-compact and A is not E-embedded in B. (A similar situation always occurs when E is neither connected nor totally disconnected!). Nevertheless, most interesting sufficiently complicated compact algebras satisfy (**). We need a simple categorical fact. <u>Proposition 3</u>: Let A,B,C,D be topological spaces, $A \subseteq B$, D a retract of C. If A is C-embedded in B, then A is D-embedded in B. (proof obvious)

<u>Theorem 4</u> : If E is one of the structures I = [0,1], $D_2 = \{0,1\}$ or Z_{∞} , then each epimorphism in CFE is onto.

<u>Proofs</u> : From [4], 3.11(c) we know that a compact subset of a completely regular space is *R*-embedded in it. Since I is a retract of *R*, the result holds in case [0,1]. It is easily seen that each compact subset of a zerodimensional compact space is D_2 -embedded in it; this establishes the case D_2 . The case Z_{∞} now follows from the preceding one and propositions 1 and 3.

3. Injective and projective elements in $\ensuremath{\mathsf{CF}_\mathsf{E}}$

 $\frac{Proposition \ 4}{Proposition \ 4}$: Let E be an arbitrary Hausdorff space. Then in TCP_E all monomorphisms are one-to-one. If we consider the assertions (α) : E is an ss-space

(β) : Each epimorphism in TCP_E is onto a dense subset of its codomain

 (γ) : Each E-compact space is E-maximal

Then ($\alpha)$ implies ($\beta)$ and ($\beta)$ implies (γ).

<u>Proof</u> : The notion of an ss-space is discussed in [8]; for E-maximal spaces we refer to [7]. Since TCP_E contains 1-free objects, all monomorphisms are one-to-one. Now

 $(\alpha) \Rightarrow (\beta)$: If A,B∈TCP_E, f∈C(A,B), $\overline{f(A)} \neq B$ then for x∈B\ $\overline{f(A)}$ we may find n≥1, g∈C(B,Eⁿ) and open G⊆Eⁿ such that g(x)∈G and g($\overline{f(A)}$)∩G=ø.

By hypothesis there are ϕ , $\psi \in C(E^n, E)$ that are equal on $g(\overline{f(A)})$ but differ in g(x) so that $\phi \circ g \circ f$ equals $\psi \circ g \circ f$ though $\phi \circ g$ differs from $\psi \circ g$.

 $(_{\beta}) \Rightarrow (_{\gamma})$: Let $A \in TCP_E$, A_0 its E-maximal extension, i: $A \rightarrow A_0$ the natural embedding. Then i is an epimorphism, so that $\overline{A} = A_0$; this is possible only if $A = A_0$.

<u>Theorem 5</u> : If E is a sufficiently complicated space, then the singleton element is an injective object in CFF. Furthermore :

(a) If there is a nonsingleton injective object in $\mbox{CF}_{\rm E},$ then E is countably compact

(b) Conversely, if E is a compact ss-space, then CF_E contains nonsingleton injective objects.

(c) If E is compact and there is at least one nonsingleton injective object in CF_E , then the injective objects are just the structures C(X,E) where X is an extremely disconnected compact Hausdorff space.

<u>Proofs</u>: (a) If there is a nonsingleton injective object in CF_E , then each epimorphism in TCP_E clearly needs to be onto. Now, if E is not countably compact, then z is E-compact. But z is a dense subspace of its one point-compactification that, too, belongs to TCP_E .

(a') : This follows from lemma 2, part (2) \Rightarrow (3)

(b) : If E is a compact ss-space, then each epimorphism in TCP_E is onto. An application of [5], theorem 2.5 completes the proof.

(c) : Again, each epimorphism in TCP_E is onto, so that the result follows from [5], theorems 1.2 and 2.5.

The projective objects in CF_E are not easily characterizable. We know, however, some partial results :

<u>Theorem 6</u> : If E is sufficiently complicated, then in CF_E (a)A projective object is a retract of a free object (b) A free object with at least one generator is projective iff each epimorphism in CF_E is onto; if so, all free objects are projective and the projective objects are just the retracts of the free objects. (c) The free object without generators is projective.

If E is not countably compact, it is the only projective object.
(d) Even if the 0-free object is the only free projective object,
there may be other projective objects

<u>Proofs</u> : (a) From theorem 2 we know that each object is the epimorphic image of a free object. By projectivity, it is a retract.

(b) From theorem 3 we know that each epimorphism in CF_E is onto iff E is injective in TCP_E . Now for each m>0, E is injective iff E^m is injective. Furthermore, a retract of a projective object is projective.

(c) The first assertion is obvious. If E is not countably compact, z and z_{∞} both belong to TCP_E and z is a dense subset of Z_{∞} , not D₂-embedded in it; since D₂ is a closed subspace of each nonempty nonsingleton element of TCP_E the result follows.

148

(d) As for an example, set $E=[0,1]\cup[2,3]$. From the remarks preceding proposition 3 we know that not every epimorphism in CF_E is onto; so the 0-free object is the only free projective object. On the other hand,[0,1] belongs to TCP_E and is an injective object of that category. (this example is somewhat artificial since as far as we know $[0,1]\cup[2,3]$ has no interesting sufficiently complicated structure; from a purely theoretical point of view however, such a structure is definable; cfr. [8])

References

1. P. Brucker : Verbände stetiger Funktionen und kettenwertige Homo-
morphismen, Math.Ann. 187 (1970) 77-84
2 : Eine Charakterisierung K-kompakter topologischer Räume,
Monatshefte für Mathematik 75 (1971) 14-25
3 : Dualität zwischen Kategorien topologischer Räume und
Kategorien von K-Verbänden, ibid., 76 (1972) 385-397
4. L. Gillman and M. Jerison : Rings of continuous Functions, Van
Nostrand 1960
5. A.M. Gleason : Projective topological Spaces, Ill.J.Math.2 (1958)
482-489
6. W. Govaerts : Representation and Determination Problems : A Case
Study, Bull.Acad.Pol.Sci.Sér.Sci.Math.Astr.Phys. 24 (1976)
57-59
7 : A modified Notion of E-compactness, ibid 61-64
8 : A Separation Axiom for the Study of Function Space
Structures, ibid. 65-69
9. P.R. Halmos : Lectures on Boolean Algebras, Springer Verlag, New York
1963 and 1974
10. Z. Semadeni : Banach Spaces of continuous Functions (vol.I),
Warszawa 1971
Seminarie voor hogere analyse, Krijgslaan 271 (gebouw S9),
B-9000 Gent (Belgium)