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ON ZERO-DIMENSIONAL MAPPINGS AND COMMUTATIVE ALGEBRA 

A.ZARELUA 

Tbilisi 

Integral dependence, integral closure, integrally closed ring 
- all these are well-known notions of commutative algebra. On the 
other hand there exists a functor from the Banach commutative alge
bras category to the compact spaces category due to space of maximal 
ideals. In this line of thought to familiar theorems of commutative 
algebra must correspond some theorems on compact spaces. Here is one 
of them which is the easiest to formulate: 

Theorem. A continuous mapping f :X —*- Y of compact spacea i9 ze
ro-dimensional (resp. monotone) iff the integral closure of the al
gebra f*CR(Y) is dense in the algebra CK(X) (resp. the algebra 
f*CK(Y) is integrally closed in the algebra CR(X)), K = R, C. 

This theorem may be considered as a strict form of Katetov's 
zero-dimensional (monotone) mapping characterization theorem and 
actually has many specifications and versions for mappings, which 
are near to the ones spoken about. 

Applications are the following: 

1) approximation theorem for zero-dimensional mappings by fi
nite-to-one mappings, 

2) algebraic characterization of mappings, which may be ex
tended on some compact extension to zero-dimensional ones, 

3) acyclicity theorems for inverse image functor f* in sheave 
theory for some kind of zero-dimensional mappings, 

4) universal spacee for apacee which have zero-dimenaional 
mapping in the fixed space, 

5) simple algebraic characterization of monotone mappings. 
Using the latter one and the well-known description of perfect 

compactifications as monotone images of ffech compactification, one 
may obtain an eaey verifiable criterion for a compactification to be 
perfect, which is applied to prove that the Wiener compactification 
of harmonic space in the sense of Constantineacu-Cornea-Meghea ie 
perfect. 
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