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ON A CLASS OF TOPOLOGICAL SPACES CONTAINING ALL BICOMPACT 

AND ALL CONNECTED SPACES ^ 

A. ŠOSTAK 

Riga 

Wћen comparing a cla s $ of bicompact spaces and a claзs # of 

connected spaces, it is conspicuous tћat in зpite of all tћeìr outward 

dissimilarity tћey ћave some common (more preci ely-analogou ) proper-

ties tћat moreover belong to tћe Ъa ic topological qualities of tћe e 

claэses. Por example: 

1) A product of topological spaces is Ъicompact (connected) iff 

every factor is Ъicompact (resp. conneeted). 

2) An image of a bìcompact (connected) space under a continuous 

mapping is Ъicompact (resp. connected)* 

3) Let T& ( T % ) Ъe a collection of all closed mapping ћaving 

tћe property tћat tћe preimage of every point is Ъicompact (reэp. con-

nected). Tћen a space X wћicћ is a preimage of a space y€J5 ( y e £ ) 

under a mapping fєў~j8( f e ťV ) is also Ъicompact (resp. connected). 

Tћe aim of tћis paper is to define and to begin tћe study of a 

class of spaces (we call tћem cb-spaces or
 и

clu tered
w
 paces)

t 

contaìning all Ъicompact and all connected spaces, wћicћ posseseeв so-

me propertie common for íß and ^ . Por example^a product of topologi-

cal spaces is a cb-space iff tћe same ћolds for every factor, a conti-

nuou image of a cb-space is a cb-spac . Altћougћ tћe tћird property 

does not ћold for cb-spaces to tћe full extent (see Example 7) tћere 

is a certain analogy of it (see Tћeorem Aџ and also Tћeorem 5). 

1) The detailed version of this paper is to be published in Utchenije 

Zápisky of the Latvian State University Issue "Topological spaces and 

their mappingsM No 4 (1978). 
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§ 1. DEFINITION AND BASIC PROPERTIES OP cb-SPACES 

Definition. A topological space X is called "clustered" or a 
cb-space if its every cover consisting of clopen sets (i.e. closed and 
open) has a finite subcover. 

Further a cover consisting of clopen sets will be called a "clo

pen cover". 

It is easy to see that bicompact spaces and also connected spa

ces are clustered (see Examples 1,2). 

Taking into consideration the fact that a complement of a clopen 
set is again a clopen set one can easily prove the following 

Theorem 1» A topological space X is a cb-space iff every cen
tered system of its clopen subsets has a non-void intersection. 

From Zorn s lemma one obtains that every centered system of clo
pen sets is contained in a (unique) maximal centered system of clopen 
sets. Calling maximal centered systems of clopen sets clopen ultrafil-
ters one can get the following corollary from the previous theorem: 

Corollary. A topological space X is a cb-space iff every clo

pen ultrafilter converges in X. 

Theorem 2. A clopen subset of a cb-space is again a cb-space. 

The proof is obvious. 

Theorem 3* An image of a cb-space under a continuous mapping is 

a cb-space. 

The proof can be easily obtained directly from the definition . 

Corollary» A quotient of a cb-space is a cb-space. 

Theorem -U Let f be a clopen mapping 'of a space X onto a 
cb-space Y. If the preimage of every point y£ Y under f is clus
tered then X* itself is a cb-space. 

1) A mapping f :X -* Y is called clopen if it maps every clopen set 
onto a clopen set# 
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Proof: Consider a family U *{*)*} of clopen subsets in the space 

X having a void intersection. To prove the theorem it is necessary and 

sufficient to show that U is not centered. Clearly, without a loss of 

generality one may consider that 16 is closed under finite intersecti

ons. 

Let us examine the family of clopen sets fdJ^ ) in the space Y. 

First we show that 0 fCU^ )= p . Really, if there exists a point yQ 

in n fdJL- ) then f (yrt) would have a non-void intersection with 
r -1 T 

every U^ and hence the family If (y0) n U^j is centered. Since 

f~ (yrt) is a cb-spacef the intersection fl ( f H y j n u , ) is non-
u oc O °̂  

void and hence 0 U^ / 0 which contradicts our conditions. This contra

diction implies that 0 ftU^ ) » <p and as Y is a cb-space, the fami

ly {fCU^)} cannot be centered. Find indexes <£,..., xn such that 

Q f(uoCi) a 0 t then obviously Q Uo0i « 0 and so the family 

U * {U^} is not centered# The theorem is proved. 

Using similar ideas it is easy to prove the following proposition: 

Theorem 5. Let f be a mapping of a space X onto a bicompact 

space Yf the preimage of every point ye Y under f being clustered. 

Then X is. also a cb-space. 

Theorem 6« Let X be a completely regular space and ft X its 

Stone-fiech compactification# The space X is clustered iff its every 

cover consisting of clopen in (3 X subsets has a finite subcover. 

The proof follows from the well-known fact (see e.g. [1] ) that 

the closure of a clopen subset AcX in the extension is clopen in it. 

Theorem 7. A product of topological spaces is a cb-space iff all 

factors are cb-spaces. 

Proof: If the product X aTTX^ is a cb-space, then so is every 

factor X^ f because Tx is the image of X under corresponding pro

jection ̂ : X -*X^ (see Theorem 3 ) # 

Conversely, if every X* is clustered then the product X = TTX^ 

is also a cb-space# This fact may be proved by virtue of a number of 

auxiliary propositions some of which we suppose to be of interest by 

themselves. 

Lemma 1# Let Y be a cb-spacet X -any topological space and 

JT : XxY-*Xt \>* XxY-**Y - the corresponding projections. If 9£y 
iv •*• A 
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is a clopen mapping, then the mapping 5T is also clopen* 

Using Lemma 1 it is easy to prove 

Lemma 2# If X is bicompact and Y is a cb-space, then the pro

jections Tc and It are clopen mappings* 

Lemma 2 implies 

Proposition 1* A projection along a cb-space is a clopen mapping. 

This proposition in its turn allows us to prove 

Proposition 2* The closure of a projection of a clopen subset 

of the product is a clopen subset in the corresponding factor. 

Lemma 3« Let zfC€TTX^ f moreover z £ W nad c e W where W is 

a clopen subset in the product* Then there exists a factor X^ and a 

clopen set U^cX^ such that z e flr^ (U^ ) but c £ Tt^Hurx ) # 

It is convenient to prove this lemma first for two factors,then 

to extend it to the finite case and finally to use Proposition 2 to 

prove the general case* 

With the aid of Lemma 3 and Proposition 1 one can prove the follo

wing 

Lemma 4# Let X,Y be cb-spaces, W- a clopen subset of the pro

duct X x Y and z- a point that does not belong to W# Then there 

exist clopen sets U<-:X, V c Y such that (U x V) 0 W « <p but z e U x V , 

By Lemma 4 and Proposition 1 we may prove the following 

Lemma 5# The product of two cb-spaces is a cb-space# 

Corollary# The product of a finite number of cb-spaces is also 

a cb-space# 

Further, using this corollary, Lemma 3 and Theorem 2, it is not 

difficult to prove 

Lemma 6# If X^Xg,***^ are cb-spaces and W is a clopen 
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subset of the product X =- TTX. then there exist clopen sets ^ c X 

U 2 c X 2 „ M , U n c X n such that z eTO.V and (TTU^nW » <p « 

Nowf using Proposition 2, one may generalize Lemma 6 : 

Proposition 3» Let X^ be a cb-space for every index oC e A f 
W- a clopen subset in the product X =- TTX^ and zd:W # Then there 

exists a clopen set VcX such that zeV, vnw » 0 andf moreover, 

V is of the form V "TTU^ where every U^ is a clopen subset of the 

corresponding factor X^ and U^ = X^ for all but a finite number of 

indexes <x # 

Now we pass directly to the proof of Theorem 7# Let X̂ - be a cb-

space and 5̂ -a clopen ultrafilter in the product X =- TTX^, For every 

oc consider a family of subsets 9^ »{^Tu) : U £ T\. Every ft^(U) 

is a clopen subset of the corresponding factor (see Proposition 2) f 

hence £ is a centered system of clopen subsets in a cb-space X^ and 

so the intersection H {^(U) s U e Tj is non-void• Taking a point 
xoc e ft {̂ c ^u) s u £ ^} f°r e v e ry * t consider a point z » (x^ ) 

in the product ^ X ^ • We shall show that z£fl{U : U e. T] # 

Really, if z£ f){u : U£.T}f then there exists a set l e f that 

does not contain z • Using Proposition 3 we can find clopen sets 

U ^ c 2^, U^c X*2 , • . , . , U^nc X*n such that zeV and VnW » <f> 

where V -= TTU^ and moreover Ux = X<x for all oc distinct from ^•••toCrr 

Consider now the sets \fci« C-^NU^. )x nx*. It is easy to verify that 

\ U. • ••U V^n U V « X and as T is a clopen ultrafilter at least one of 

the sets %.§•••# ^cn->^ xnust belong to ̂  • On the other hand directly 

from the definition of the point z it is clear that no set ^imay 

belong to T , besides V does not belong to f either because We£" 

while VHW * <f> « This contradiction proves that z must belong to 

every U e $* and hence the clopen ultrafilter ^converges. Now, using 

the corollary of Theorem 1 we conclude that the product X « TTX^ 

is a cb-space* 

In such a way Theorem 7 is proved. 

§ 2. EXAMPLES 

Example !.» All bicompact spaces aref obviously, clustered* 
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Example 2. All connected spaces are clustered. 
Really, the only non void clopen subset of a connected space X 

is the whole X itself# 
More generally, it is easy to notice that a space that can be re

presented as a finite union of its connected subspaces is also cluste
red* 

Example 3# Prom Theorem 7 it follows that a product of a bicom-
pact space and a connected space is clustered. 

Example 4« Consider a subspace L of a unit interval [0fl] de
fined by the equality L • [Ofl]\[n' n=lf2,...}. The space L is nei
ther bicompact nor connected, but it is a cb-space# 

Example ft« Modify the previous example taking for base on the 
set [0fl]\{&: n » l f2 f # # #} all sets open in L and also the sets of 
the form V * {0}u(U(£t £ + £n)) where 0 < £„ < n* for every n . The spa
ce obtained in this way will be denoted by L# It is easy to check 
that L # is a cb-space but it is neither bicompact nor connected#More-
overf the space L' is not first countable. 

Example 6# According to Theorem 2 the property "to be clustered
11 

is inherited by clopen sets# On the other handf it is easy to notice, 
that closed sets do not inherit this property:the space N of natural 
numbers, being a closed subspace of the real line R, is not a cb-space« 

It is natural, however, to ask a question about the heredity of 
the property "to be clustered1* in the following refined form# Let X 
be a cb-space and Y its closed subspace# Can one affirm that every 
cover of Y by clopen in X sets has a finite subcover? The following 
example gives a negative answer to this question, too# 

Consider a subspace X of the plane, defined by the equality 
X «UX nu{b} where every X n is a set of points with the first 
coordinate equal to * and the second belonging to the interval [0fl] 
and b is the point (0fl)# It is not difficult to notice, that X is 
a cb-space -every clopen set, containing the point b must contain 
also almost all of X # Consider now the closed subspace Y<=X defi
ned by the equality Y * f(l,0), (j,0),#„# ,(J,0),### } # 

It is clear that the family {Xn} is a clopen cover of Y, but 
one cannot find a finite subcover in it. 

One can also construct examples which show that the property to 
be clustered is not inherited by open subspaces, either. 
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Example 7# There exists a not clustered space Xf which can be 

perfectly mapped onto a cb-space(even onto a connected space) , . 

For such a space X one can take a subspace of the planefdefined 

by the equality X =UX n where Xn« (nf[Ofl] ) for all n =0f±lf±2v#.« 

Obviously, the space X is not clustered. On the other handt let a 

mapping f from X onto R be defined by the formula f(nfx) *n + x 

for every point (n,x)£X0 It is clear that the mapping f is perfect 

(the preimage of every point re R consists of either one or two 

points)* 

The same example shows us also that a space X which is not clu

stered may have for its quotient a connected space even in the case 

when all the equivalence classes are finite* 

LITERATURE 

[l] R.Engelking: Outline of General Topology. 


		webmaster@dml.cz
	2012-09-21T10:10:15+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




