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COMPACTIPICATIONS BY ADDING A COUNTABLE NUMBER OF POINTS 

T. HOSHINA 

Tsukuba 

All spaces are assumed to be completely regular and T,. 

Let aX be a compactification of a space X. Then aX is called 

a countable-points compactification if the remainder aX - X consists 

of at most a countable number of points. Concerning this notion 

K. Morita posed the following problem in [1]: Characterize those spaces 

which have a countable-points compactification. 

As he pointed out there, if a space X has a countable-points 

compactification then X must be necessarily Cech-complete and semi-

compact, and In case X Is.separable metrizable the converse is also 

true by a theorem of ZIppin [4], to which K. Morita gave a proof in [3] 

based on his results on uniformities [2], However even if X is Cech-

complete semicompact metrizable X does not have a countable-points 

compactification in general as will be shown by an example below. Thus 

K. Morita suggested the author to find a necessary and sufficient con

dition for metrizable spaces to have such a compactification. Namely 

the purpose of this paper is to give an answer to his suggestion. 

Here a space is called semicompact if it has a basis of open sets, 

each of which has a compact boundary. For any space X let R(X) be 

the set of all points having no compact neighborhood. 

Now our theorems are stated as follows. 

Theorem 1. Let X be%a Cech-complete semicompact space. If 

R(X) is separable metrizable then X has a countable-points compacti

fication. 

Theorem 2. Let X be collectionwise normal and R(X) paracom-

pact. If X has a countable-points compactification then R(X) is 

Lindelof. 

Theorem 3- A metrizable space X has a countable-points com

pactification iff X is Cech-complete semicompact and R(X) is 

Lindelof. 

Proofs of these theorems need several lemmas and are essentially 

based on K. Morita?s paper [3] above. 

Example. Let S be the topological sum of an uncountable number 

of copies of the space of irrationals. Then S is Cech-complete semi-

compact metrizable. Since R(S) = S is not Lindelof, by Theorem 2 S 
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has no countable-points compactification. 

Pinally we present a further problem of K. Morita which he commu-

nicated to the auther: 

Problem. Characterize a semicompact space X whose Preudenthal 

compactification үX itself is a countable-points compactification of 

X. 
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