Josef Novák Concerning the topological products of two Fréchet spaces

In: Josef Novák (ed.): General topology and its relations to modern analysis and algebra IV, Proceedings of the fourth Prague topological symposium, 1976, Part B: Contributed Papers. Society of Czechoslovak Mathematicians and Physicist, Praha, 1977. pp. [342]--343.

Persistent URL: http://dml.cz/dmlcz/700707

Terms of use:

© Society of Czechoslovak Mathematicians and Physicist, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

J. NOVÁK

Praha

Let (X,u) be a Hausdorff space. Denote u^* the following operator: $x \in u^*A$ if there are points $x_k \in A$ such that each neighborhood of x contains x_k for all but a finite number of k, i.e. if $\lim x_k = x$. Let $\{S_m\}$ be a <u>twofold sequence</u>, i.e. a sequence of sequences S_m of points of X. If S_{m_1}' is a subsequence of S_{m_1} , then we have <u>twofold subsequence</u> $\{S_{m_1}'\}$ of $\{S_m\}$. We define: $\{S_m\}$ converges to x_0 provided that $x_0 \in u \cup S_{m_1}'$ for each subsequence $\{S_{m_1}'\}$ of $\{S_m\}$. Here S_{m_1}' denotes the set of all points of the sequence S_{m_1}' . A sequence $\{x_k\}$ is a <u>crosssequence</u> in $\{S_m\}$ provided that there is a subsequence $\{m_k\}$ of $\{m\}$ such that $x_k \in S_{m_k}$.

Classify all points in a Hausdorff space into three (not necessarily disjoint) classes. We define the point $\mathbf{x}_0 \in \mathbf{X}$ to be a $\overline{\mathcal{X}}$ point provided that the following condition is fulfilled: if a twofold sequence $\{P_m\}$ converges to \mathbf{x}_0 , then there is a subsequence of $\{P_m\}$ each crosssequence in which converges to \mathbf{x}_0 . A point \mathbf{x}_0 is called a \underline{O} point if there is a twofold sequence $\{R_m\}$ converging to \mathbf{x}_0 no crosssequence in which converges to \mathbf{x}_0 . A point \mathbf{x}_0 is a \underline{O} point if there is a twofold sequence $\{R_m\}$ converging to \mathbf{x}_0 no crosssequence in which converges to \mathbf{x}_0 . A point \mathbf{x}_0 is a \underline{O} point if there is a twofold sequence $\{S_m\}$ converging to \mathbf{x}_0 in each subsequence of which there is a crosssequence converging to \mathbf{x}_0 and another one containing no subsequence converging to \mathbf{x}_0 ; moreover, if $\lim S_m = \mathbf{x}_0$ for each m, then \mathbf{x}_0 is called a \underline{O}_1 point and if $\lim S_m = \mathbf{x}_m$ and $\lim \mathbf{x}_m = \mathbf{x}_0$ where \mathbf{x}_m is one-to-one, then we have a \underline{O}_2 point.

Let a twofold sequence $\{S_m\}$ converge to x_0 in (X,u) and $\{T_m\}$ converge to y_0 in (Y,v). The points x_0 and y_0 are said to be coupled if the following statement holds: If a crosssequence in $\{S_m\}$

converges to x_0 , then the corresponding crosssequence in $\{T_m\}$ does not converge to y_0 and vice versa: If a crosssequence in $\{T_m\}$ converges to y_0 , then the corresponding crosssequence in $\{S_m\}$ does not converge to x_0 .

<u>Theorem</u>. Let (X,u) and (Y,v) be Hausdorff Fréchet non isolated spaces and let $(X \times Y,w)$ be their topological product. Then $(X \times Y,w^*)$ is a Fréchet space iff there is no ρ point either in X or in Y and there are neither $\sigma_1 \sigma_2$ nor $\sigma_2 \sigma_2$ coupled points.

References

- [1] А.В.Архангельский: Аксиома Мартина и строение однородных бикомпактов счетной тесноты. Докл. Акад. Наук СССР 226 (1976),
 1249-1252. (English translation: Soviet Math. Dokl. 17 (1976), 256-260.)
- [2] C.T.Kendrick: On products of Fréchet spaces. Math. Nachr. 65 (1975), 117-123.
- [3] J.Novák: On convergence groups. Czechoslovak Math. J. 20 (95) (1970), 357-374.
- [4] J.Novák: On some topological spaces represented by systems of sets. Topology and its applications (Proc. of the Internat. sympos. on topology and its appl., 1968). Beograd, 1969, 269-270.