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ON TWO THEOREMS OF V. V. FILIPPOV 

E. MICHAEL 

. Seattle 

1. Introduction. The following two beautiful theorems were recently proved 
by V. V. Filippov [3, Theorems 1.1 and 2.1]. 

Theorem 1.1. (Filippov). If f: X -> Y is a bi-quotient s-map, and if X has 
a point-countable base, so does Y. 

Theorem 1.2. (Filippov). If f: X -> Y is a quotient s-map, if X has a point-
countable base, and if Y is a Hausdorff space of pointwise countable type, then f 
is bi-quotient. 

The purpose of this note is to briefly outline a proof for Theorem 1.1 which 
is somewhat shorter and simpler than Filippov's (for details, see [1]), and to indicate 
how Theorem 1.2 can be strengthened in two directions (for details, see [4, Theorem 
9.5]). 

Let us briefly explain our terminology. All maps are continuous and onto. 
A mapf : X -> Y is bi-quotient [1] [2] if, whenever y e Yand ^ is a cover off""1^) 
by open subsets of X, then y e (U / ( ^ ) ) ° for some finite *V c %. (We use A0 to 
denote the interior of A ) A map f: X -> Yis an s-map if f~~i(y) has a countable 
base for every y e Y. A space Yis of pointwise countable type if every y e Yis con
tained in a compact subset K of Yof countable character in Y(i.e., there is a countable 
base for the neighborhoods of K in Y), 

It should be remarked that, in Theorem 1.1, the cardinal K0 (which appears 
in the definition of "s-map" and "point-countable") can be replaced by any other 
infinite cardinal. This was also observed by Filippov. 

2. A new proof for Theorem 1.1. Let J1 be a point-countable base for X, and 
let & = f(a). Let 0 = {#" c & : & finite}. For each - F e <£, let 

M(&) = { P e # : P c (U^)° 5 P * ( IK)° if * £ 3?) , 

V(*) = (V(Jt(*)))0 . 

Let *f~ = {V(&) : & e $}. Then Y is the required point-countable base for Y. 
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The verification that if is a base for Y is fairly routine, but the proof that it is 
point-countable requires some work. For details, see [ l ] . 

3. A strengthening of Theorem 1.2. Consider the following property of a space Y. 

(*) If (FH) is a decreasing sequence of subsets of Y with a common accumulation 

point y9 then there exist closed (in Y) subsets An a Fn whose union \J An is not 
n = l 

closed in Y. 

Property (*) is a useful hypothesis in a number of theorems (see [4, section 9]). 
Every 7\-space of pointwise countable type has property (*), but not conversely. 

According to [5], a space Y is determined by countable subsets if a subset A 
of Y is closed in Y whenever C c A for every countable C a A. Clearly, every se
quential space has this property. 

We can now state the following theorem, which is easily seen to imply Theorem 
1.2. The proof is given in [4, Theorem 9.5]. • 

Theorem 3.1. Letf:X-*Ybea quotient map. Suppose that Yis a Hausdorff 
space satisfying (*), that X or Y is determined by countable subsets, and that 
(f~x(E))~ is Lindelof for every countable E cY. Then f is bi-quotient. 

References 

[1] D. Burke and E. Michael: On a theorem of V. V. Filippov. Israel J. Math. (to appear). 
[2] E. Michael: Bi-quotient maps and the cartesian products of quotient maps. Ann. Inst. 

Fourieг (Gгenoble) 18 (2) (1968), 287-302. 
[3] V. V. Filippov: Quotient spaces and multiplicity of a base. Mat. Sb. 80 (1969), 521—532. 

(=-Math. USSR-Sb. 9 (1969), 487-496.) 
[4] E. Michael: A quintuple quotient quest. General Ťopology and its Applications (to appear). 
[5] R. C. Moore and G. S. Mrowka: Topologies determined by countable objects. Notices Amer. 

Math. Soc. 11 (1964), 554. 


		webmaster@dml.cz
	2012-09-21T04:21:18+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




