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ON A CLOSED RANGE THEOREM FOR NONLINEAR 
OPERATORS 

S. SWAMINATHAN 

Halifax 

Let X and Y be Banach spaces, Ta bounded linear operator from X to Y and T* 
its conjugate from Y* to X*. It can be shown that the range of Tis closed if and only 
if it is the set of all y in Y for which <y, y*} = 0 for y* in ker T*. The operator T 
is called normally solvable if, for y in Y9 the equation Tx = y has a solution if and 
only if y e (ker T*)1. Then the closed range theorem is equivalent to the statement 
that the operator Tis normally solvable if and only if T(X) is closed in Y. 

When T is nonlinear and Frechet differentiable it is possible to obtain closed 
range theorems by defining normal solvability of Tfor suitably restricted X and Y 
In [3] S. I. Pohozaev considers a uniformly convex Y and defines T to be normally 
solvable when 

(i) for any y in Y, there is a sequence {yn} such that yn -> y and for every yn 

there exists xneX minimizing the functional \Tx — yn\9 and 

(ii) for any such sequence {yn} if T(xn) - yn e [ker T'fo)*]1 then y e T(X). 

His result can be stated in the following form: Let X be a Banach space and Y 
a Banach space which admits nearest points, i.e., for each closed set M in 7, the 
set of all x in Y, for which there is a y in M with ||x — y|| = rf(x, Af), is dense in Y. 
Let T be a possibly nonlinear Fr6chet differentiable operator from X to Y. The 
operator Tis normally solvable if and only if the range T(X) is closed in Y. 

D. E. Wulbert [4] has shown that, besides uniformly convex Banach spaces, 
the following two classes of Banach spaces admit nearest points: (a) 2R Banach 
spaces or 2-fully convex Banach spaces of Ky Fan and I. Glicksberg [see 2, p. 113]. 
X is defined to be such a space when if {xn} is a sequence in X such that |Jx„|| = 1 
for every n, and |xm + xn\\ -+ 2 as m, n -> oo, then {x„} is a Cauchy sequence, 
(b) Uniformly smooth [see 2, p. 113] Banach spaces satisfying the property that 
if a sequence {xn} converges weakly to JC and if \\xn\\ -* \\x\\9 then xn converges strongly 
to x. Since there exist 2R Banach spaces which are not isomorphic to a uniformly 
convex space we have a positive answer to the question raised by S. I. Pohozaev 
in [3]. It should be pointed out that F. E. Browder [1] has formulated the underlying 
theory in a very elegant setting by considerably sharpening and generalizing the 
result to X a locally convex space and Y any Banach space. 
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