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CARDINALГПES OF BASES 

H. M. SCHAERҒ 

Montreal 

Most definitions of bases are specializations of the following one: 
Given a class if of subsets of a set .R and a transitive relation < on R9 call 

a subset of the union \Ji^ of ^ a "T-base iff it contains, for each Vini^ and v in V9 

some b < v which belongs to V == {re U ^ • 3*>' < T9 V'eV}. 
In this paper we relate the least power wjT of iT-bases (assumed to be >0) 

to two other cardinalities depending on a relation a defined on \Jir
9 and state a few 

applications. One of these cardinalities, denoted by eel a9 is the sup of the powers 
of all E cz \J"T such that a9 beE and aab9 baa imply a == b. To define the other, 
call a class 0 of subsets of (J^ a o-grading of V iff its union contains, for each V 
in f and v in F, some 6 < v9 b e F, and for each F in *S there is G in <§ with the 
following property: for each V in f and / in F n V there is gf in G n 7 such that 
f^g' for each gr' in G with #(70'. Let <nT be the least power of such cx-gradings. 

Theorem 1. Let a be any relation on \}V such that aab holds whenever there 
isVin *r and v in Vwith v < a e Vand v < b9 and let F « {V: Ve Y}. Then wT 
is finite iff both eel a and ai^ are finite (which is sure if both eel a and ai^ are 
finite); otherwise 

wV = max (eel a9 aV) ^ max (eel a9 <nT) . 

CoroUary. For infinite wrT the Suslin Property wV = eel a holds iffai^ ^ eel a 
and is implied by o*V ^ eel a. 

Subsequently let X be a topological space and wX its weight. Some applications 
of Theorem 1 to the determination of wX follow. 

Direct applications. Let R be the class of all nonvoid subsets of X, V(x) the 
class of all open neighbourhoods of x e X9 "/* the family of all K(x)and < the inclusion 
on R. Then [Ji* is the topology of X> F « 1T, wV = wX9 and Theorem 1 yields 
information on the weight of X for each a in an infinite family of relations which 
contains the Intersection Relation Q (AQB iflF A intersects B). Since eel Q is the cel-
lularity eel X of Xf the Corollary sheds some light on the problem of Suslin. (This 
method can be extended to arbitrary coverings of a set.) 
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Indirect applications. For each x in X let V(x) be a class of subsets of X each 
of which contains x. Call the family if of all these classes a a-system on X iff a is any 
relation on \Jf with the following properties: 

(i) AaB holds whenever TT contains some V(x) such that x is in B and _4 
is in V(x)\ , 

(ii) there is a cr-grading 0 of if which is /«//, i.e., such that U^ = U ^ and 
every element of 0 contains members of every V(x); 

(iii) the class of all A c X such that for every x in A there is B in F(x) with 
B c: A is the topology of X. 

Theorem 2. For eyery /w// a-gra^ing <§ of any a-system on X9 

wX ^ eel a . card 0 . 

' This theorem yields the following specialization. 

Theorem 3. IfX is a uniformizable space and uX the least weight of uniform
ities compatible with the topology of X, then wX ^ eel X . uX. 

Proofs and other applications will appear elsewhere. 
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