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SOME MAPPING AND FIXED POINT THEOREMS 

J. KOLOMf 

Praha 

1. This remark concerns some mapping and fixed point theorems. Some of these 
results are related to those of Pochozajev [1], Browder [2], Edelstein [3], Belluce 
and Kirk [4], Dane§ [5] and our paper [6]. 

Let X9 Y be normed linear spaces. In the following we use the symbols "->*% 
"-*>" to denote strong and weak convergence, respectively. To fix our terminology 
we introduce here the following notions. A set M c X is said to be (a) weakly closed 
if for each un e M9 un-* u0=> u0e M; (b) weakly compact if for each un e M there 
is a subsequence unic which is weakly convergent in X. A mapping F : X -» 7 is said 
to be 

(1) weakly continuous if un e X9 ueX9 un-» u => F(un) -* F(u); 
(2) demicontinuous if un9 ueX9un-+ u => F(un) -* F(u); 
(3) p-positively homogeneous if F(tu) = tp F(u) for each ueX9 t ^ 0, where 

p > 0. 

We shall say that a functional <p is quasi-convex on a convex set M a X if uy 

v e M9 X e [0,1] => q>(ku + (1 — X) v) g max [<p(u)9 <p(v)"]. A functional / is said 
to be weakly lower-semicontinuous at u0 eX if uneX9 un -± u0 =>/(ti0) ^ lim f(u„\ 

n-*co 

By Bd(u) we denote an open ball of a space X centered at u and with the radius 
3 > 0 . 

2, We start with the following 

Theorem 1. Let X be a reflexive Banach space, F : X -» X a mapping such 
that for some k > 0, u9 veX9 u * v=>\\u - v - k(F(u) - F(v))\\ < \\u - v\\. 
IfF(X) is weakly closed in X9 then F(X) = X. 

Theorem2. LetX9 Ybe normed linear spaces, Yreflexive9 F :X -*Ya mapping 
such that F(X) is weakly closed in Y Let H :X ->Ybe a p-positively homogeneous 
map ofX onto Y. Suppose that for each ueX there exist constants au9 du (0 ^ <xu < 1, 
Su > 0) and a mapping GU:X-* Ysuch that v e Bdu(u) => \F(v) - F(u) - Gu(v - u)\\ ^ 
^ ocu\\H(v - n)||. Assume there is R > 0 and eu£o such that v e B*(0) => \\Gu(v) -
- H(v)\\ £ «.l-»(i7)|, u eX. Ifeu + att < 1 for each ueX, then F(X) = 7. 
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Corollary 1. Let X9 Ybe normed linear spaces, Yreflexive, K:X -> Ya linear 
(i.e., additive and homogeneous) mapping of X onto Y, F :X -» Y a map such that 
(K + F)(X) is weakly closed. Assume that for each ueX there are constants 
au, 8U (0 = a„ < 1, 5U > 0) such that ve Bdu(u) => ||F(t>) - F(u)\\ = au\\K(v - u)||. 
Then (K + F)(X) = Y. 

Remark. The conclusions of Theorems 1, 2 remain true if X, Yare normed 
linear spaces, F : X -» Y is weakly continuous, F(0) = 0 and {u e X | \\F(u)\\ <Z a) 
is weakly compact for each a _ 0. Here we do not assume that F(X) is weakly closed 
in Y. 

Theorem 3. Let X, Ybe normed linear spaces, X reflexive, F : BR(0) -» Ya given 
mapping, G :X -+Y a suitable p-positively homogeneous mapping of X onto Y 
so that u, veBR(0) => ||F(ti) - F(v) - G(u - v)\\ ^ a|G(w - v)\\, for some a e 
e [0,1). Suppose there is a point u0 e BR(0) such that f(u0) < min /(«), where 

IM1°* 
f(u) = [|F(M)||, u eBR(0). If either a) F is weakly continuous on BR(0)9 or b) F is 
demicontinuous on BR(0) and f(u) is quasi-convex on BR(0)9 then there exists u* e 
e BR(0) such that F(u*) = 0. 

Theorem 4. LetX9 Ybe normed linear spaces, M a X an open subset, F : M -» Y, 
G :X -» Y mappings such that f(u) = \\F(u) + G(w)|| is weakly lower-semiconti-
nuous on M and that G is a linear mapping from X onto Y. Suppose that 
{u e M | f(u) ^ c} is weakly compact and non-void for some c }> 0. If for each 
point ueM there exist constants aM, 8U (0 jg a„ < 1, 5U > 0) so that Bdu(u) c M 
and v e B5u(u) => ||F(t>) — F(u)\\ ^ att|G(t? — w)||, then there exists a point u* e M 
such that F(u*) + G(u*) = 0. 

As a simple consequence of Theorem 4 one can obtain a new fixed-point theorem 
for a class of nonlinear mappings which are called local contractions (compare [3]). 

A mapping F defined on an open subset M of a normed linear space X with 
values in X is said to be a feeble local contraction on M if for each ue M there are 
constants au, du (au e [0,1), 8U > 0) such that v e Bdu(u) c M => \\F(v) - F(u)\\ ^ 

= a»\\v ~ MII-
Theorem 5. Let X be a normed linear space, M <=-X an open subset, F : M -» X 

a feeble local contraction on M such that {u e M | ||u — -F(M)II = c} *s weafcZj; 
compact and nonvoidfor some c ^ 0. If either a) F is weakly continuous on M, or 
b) M is convex, F is demicontinuous and il/(u) = ||w — F(w)|| is quasi-convex on M, 
then there is u* e M such that u* = F(u*). 

Theorem 6. LetX be a normed linear space, M a non-void subset ofX, F : M -» 
-+ M such that u9veM9 u 4= v => \\F(u) - F(t;)|| < \\u - i>||. / / either a) X is 
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reflexive and (id — F) (M) is weakly closed, or b) (id — F) (M) is weakly closed 
and weakly compact, then there is a unique point u* e M such that F(u*) = M*. 

Theorem 7. Let Xbea reflexive Banach space, M an open subset of X, M #= 0, 
F : M -> X a feeble local contraction on M. / / (id — F) (M) IS weakly closed, then 
there is a point u* e M such that u* = F(u*). 

Remark. In comparison with Banach's contraction principle we need not 
assume in Theorem 5 that X is complete, M is closed, and that F is a map of M into M. 
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