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REALIZATIONS OF CLOSURE SPACES 
BY SET SYSTEMS 

J. CHVALINA and M. SEKANINA 

Brno 

Let # be the category of all topological spaces in the sense of [1] with conti
nuous mappings as morphisms, i.e., an object of ^ is a pair <P, u) where u : exp P -* 
-> exp P fulfils the following axioms: 

M0 = 0, Z c P = > I c u J f , X czY<-P=>uX czuY. 

Let us remind that / : P -> Q is a continuous mapping from <P, u} into <g, t>> iff 
f(uX) c t;/(JST) for all X c. P. Similarly, a map/: P -> Q is called inversely conti
nuous if f(uX) 3 ©/(Jf). If/(u.X) = vf(X), the map/is called closed. #' or V will 
be the categories with the same objects as # has, but with inversely continuous 
mappings or closed mappings respectively as morphisms. 

sf will be the full subcategory of # formed by all topological spaces <P, n> from # 
for which u(X uY) = UXKJUY for all X, Yc P, (the theory of such spaces is develop
ed in [2]), and with continuous mappings as morphisms. & means the full sub
category of si formed by all topological spaces <P, ti> from si with u(uX) = uX 
for all X c: P (morphisms — continuous mappings). Let si\ st"> 38', 38" be defined 
in similar way as #', <€" are for #. 

Now, let Sf~ be the category defined in the following way. Objects of Sf~ are 
pairs <P, S> where P is a set and S c: exp P. Morphisms from <P, S> into <g, -O 
are mappings / : P -* Q for which X e T=>f~l(X) e S. If instead of this condition 
X E S =>f(X) e T holds we get the category &*. Sf will mean the intersection of Sf~ 
and ^ + . 

A full embedding of one category into another is defined as in [3], i.e., it is a full 
functor true for morphisms and objects. If X means some of categories #, s/9 31 
or their subcategories then by realization of X in Sf~ such a full embedding 0 is 
meant for which 

X >&~ 

4. 
Ens 

where Ens is the category of all sets together with all mappings as morphisms and 
• , • * are forgetful functors [D<P, n> = P = •*<-?- S>] (see e.g. [4]). 
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It is clear that the systems of open (closed) sets for an object from 3& induce two 
realizations $l9 $2 of 0b into $f~9 similarly systems of closed sets induce the realiz
ations #3, $ 4 of @t' into $f+

9 or 38" into & respectively. It is not difficult to prove 
(probably this is a known result) the following 

Proposition 1. Let <P be a full embedding of Si into $f~ such that if <f>(X, u) = 
= <F, S> then 0, Ye S. Then <P is equivalent either to Ox or to &2. 

An immediate consequence is 

Proposition 1'. &u 4>2 are the only realizations of SS into $f~. 

Similarly one can prove the following 

Proposition 2. $ 3 is the only realization of $' into $f+ 

Up to now, for 38" 9 the authors can only deduce that for every realization 
* : & -> & for all <P, u} the following assertion is valid: If $<P, u> = <P, S> 
and X is a closed set in <P, w>, then X e S. 

It is a natural question to ask what can be said about realizations of ^ or si 
in $f*. A detailed investigation of the system of three-point spaces of si9 and not 
quite trivial transfer of some results to infinite case, give the following negative 
answers. 

Proposition 3. Let JC be a full subcategory of si (si') for which there exists 
a set X9 cardX = 3, such that all topological spaces from si of the form (X9 w> 
are objects of Jf. Then there is no realization of c/C into $f~ ($^+)-

Proposition 4. The analogous assertion to that in Proposition 3 is valid 
for si" and $f under the condition that cardX = 3 or X is infinite. 

It remains an open question, whether finite X with card X = 4 can be allowed, 
too1). 

There exist, of course, embeddings of # in $f~ defined by various set theoretical 
functors. E.g., one can prove 

Proposition 5. Let <P, u) be an object in <€. Put $f <P tt>(0) = {0}, $?<PtU>(M) = 
= {exp P} for all M c P with uM = P, ^<P,tt>(M) = {{* u Y | X e Jf[ Y a M, 
7 =1= 0} | ^Veexpexp(P - tiM), Jf =# 0} otherwise. Let ^{P9u} = \J #><Pu>(M). 
Put Mcp 

<KP, "> = <exp P, ^<P, M » . 

*) Added in proofs. The answer is positive. 
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For a continuous mapf: <P, M> -» <<2, v) put $ ( / ) : exp P -> exp Q wifft $ ( / ) (-X) = 
= f(X)for all X cz P. Then $ is an embedding of<$ in $P~'. 

Or 

Proposition 6. Let <P, u> fee an object in eS. For every xeP and every neigh
borhood <% ofx in <P, ti>, put <x, $f> = {<x, y> | y e m}. Let «9*<P, M> &e an additive 
hull of the system of all <x, ^ > . For a continuous mapf: <P, M> -» <Q, t;> de/Jne 
f xf:P xP-*Qx Qas usual by f x /<xx , x2> = </(xi),/(x2)>- Put 

HP, ti> = <P x P, ^ < P , t i » f <*>(/)=/ x / . 

77ien $ is an embedding of<€ in Sf~. 

(Notice that, if <P, u) is in s/9 then $<P, M> is, in fact, in Jf.) 

Proofs and other details of the above propositions will be published partly 
in a common paper, partly in the first author's Thesis. 
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