Toposym 3

Jan Hanák
 Game-theoretical approach to some modifications of generalized topologies

In: Josef Novák (ed.): General Topology and its Relations to Modern Analysis and Algebra, Proceedings of the Third Prague Topological Symposium, 1971. Academia Publishing House of the Czechoslovak Academy of Sciences, Praha, 1972. pp. 173--179.

Persistent URL: http://dml.cz/dmlcz/700804

Terms of use:

© Institute of Mathematics AS CR, 1972

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

GAME-THEORETICAL APPROACH TO SOME MODIFICATIONS OF GENERALIZED TOPOLOGIES

J. HANÁK

Brno

0. There is an interesting possibility of a use of generalized topologies in the theory of extensive games: In my works, I introduced the so-called SN-games [= simultaneous nondeterministic games; at each nonfinal position of an SN-game all the players play mutually independently (the simultaneousness), knowing the preceding course of play, but their common influence need not determine the next position uniquely (the (local) nondeterminateness)], and I have shown that a certain reduced description (see [5], § 2.30 .2 etc.) of SN-games is sufficient for the introduction of analogues of usual game-theoretical notions, for defining certain significant classes of SN-games, and, among other, for proving various strong gametheoretical theorems. (Cf., e.g., [3], [5], [6].) (Such a conception of SN-games has also admitted the introduction of the corresponding "descriptive theory", see [3], $\S 9$, or [5], §7, and of topological games, see [4], or [5], § 8; of course, various known results concerning games with perfect information etc. are included as corollaries in theorems on SN-games.)

In this communication, we shall show that the game-theoretical interpretation of some partial unary operations (in particular, of those corresponding to some modifications) can be used for investigating their algebraic properties. In contradiction to [3]-[6], this paper contains no principal theorem: the goal is to show typical approaches, and to present a number of particular results obtained by means of them. A very short introduction of necessary auxiliary definitions, comments, and properties is given.
1.1. "AA $:=\mathscr{B}$ " means " \mathscr{A} is defined to be equal to \mathscr{B} ". dom f means the domain of the mapping $f . P$ will be a set, $\exp P:=\{A \mid A \subseteq P\}, \mathscr{T}(P):=(\exp P)^{\exp P}$; P will be usually fixed, and then we shall write, e.g., only \mathscr{T} instead of $\mathscr{T}(P)$. Let 1 , $(-1), \underline{X}$ (where $X \subseteq P$) be such that $1 A=A,(-1) A=P-A, \underline{X} A=X$ for any $A \subseteq P . \mathscr{T}$ together with the usual composition of mappings forms a monoid (the identity 1 is its unit), and \mathscr{T} together with the usual partial ordering $\leqq(u \leqq v$ iff $u A \subseteq v A$ for any $A \subseteq P$) forms a complete lattice. \leqq can be introduced in a somewhat different way, too: let Φ be the mapping for which dom $\Phi=\mathscr{T}, \Phi(u)=$ $=\{(x, A) \mid A \subseteq P, x \in u A\}(u \in \mathscr{T})$; then Φ is a one-to-one ("canonical") mapping of \mathscr{T} onto $\exp (P \times \exp P)$, but the latter set is a complete lattice with respect to \subseteq,
U, \cap, and this complete lattice structure can be transformed by Φ^{-1} back onto \mathscr{T} [thus, we shall write shortly, e.g., $u \subseteq v, u \cup v$ instead of $\Phi(u) \subseteq \Phi(v), \Phi^{-1}(\Phi(u) \cup$ $\cup \Phi(v)$), respectively]; it is easy to see that this (transformed) \subseteq is the same as \leqq. (Besides, there is the canonical one-to-one mapping of \mathscr{T} onto $(\exp \exp P)^{P}$.) Cf. [12], and [5], § 2a.
1.2. If $R(),. R_{1}(),. \ldots, R_{k}($.$) are some (one-variable) propositional functions$ defined at least on \mathscr{T}, we denote $\mathscr{T}_{R}:=\{u \mid u \in \mathscr{T}, R(u)\}, \mathscr{T}_{\boldsymbol{R}_{1} \ldots \boldsymbol{R}_{k}}:=\mathscr{T}_{\mathbf{R}_{1}} \cap$ $\cap \ldots \cap \mathscr{T}_{R_{k}}$. The following propositional functions are often used (we write " $R:$ " instead of " $R(u)$ iff"): $\mathrm{R}: u \emptyset=\emptyset ; \mathrm{M}: A \subseteq B \subseteq P \Rightarrow u A \subseteq u B ; \mathrm{E}: \mathbf{1} \subseteq u ; \mathrm{I}: u \subseteq \mathbf{1}$; $\mathrm{U}: u^{2}=u$; A: $A_{1}, A_{2} \subseteq P \Rightarrow u\left(A_{1} \cup A_{2}\right)=u A_{1} \cup u A_{2}$. Now, $\mathscr{T}_{\text {reva }}$ is the set of (all) topologies (on P). Various kinds of generalized topologies obtained by replacing the Kuratowski axioms by some weaker ones have been investigated (let us quote several of many papers concerning these problems: [1], [7]-[14]; especially, closure spaces ($\mathscr{T}_{\text {REA }}$, see [2], Sec. 14) and Čech topological spaces $\left(\mathscr{T}_{\text {rem }}\right.$ - in the sense of [1]; of course, $\left.\mathscr{T}_{\mathrm{A}} \subseteq \mathscr{T}_{\mathrm{M}}\right)$ have been often investigated (in particular, the problems of modifying Čech topologies and the properties of the constellations of Čech topologies have been studied circumstantially; see, e.g., [1], [8], [9], [11]), and some topological considerations have been performed even for general elements of \mathscr{T} itself (Koutský topologies, or "topologies without axioms", see [7], [13], and a part of [14]).

In this communication, we shall consider another kind of generalized topologies, namely $\mathscr{T}_{\text {RM }}$; they will be called game topologies (on P), cf. [5], § 2.8, 2.26.3. Under a type we shall mean $\left(P, P_{0}\right)$ where $P_{0} \subseteq P($ in [5], § 1.1, $P \neq \emptyset$ was supposed besides); $\mathscr{T}_{\text {RM }}\left(P, P_{0}\right):=\left\{u \mid u \in \mathscr{T}_{\mathrm{RM}}(P), u P=P-P_{0}\right\}$ will be the set of game topologies of the type (P, P_{0}). ([5], $\S 2.13 \mathrm{etc}$.)
1.3. Under a game system (on P) we shall mean a non-empty system $\mathscr{U}=$ $=\left(u_{j}\right)_{j \in J} \in\left(\mathscr{T}_{R M}\right)^{J}$ such that all the u_{j} have the same type, and $\bigcap_{j \in J} A_{j}=\emptyset$ implies $\bigcap_{j \in J} u_{j} A_{j}=\emptyset$ for every $\left(A_{j}\right)_{j \in J} \in(\exp P)^{J}$. [For an SN-game \mathscr{G}, let $P\left(P_{0}, J\right)$ be the set of its positions (final positions, players, respectively), let (for $j \in J) u_{j} \in \mathscr{T}(P), ~$ be such that $u_{j} A=\{x \mid x \in P$, in \mathscr{G}, j can guarantee at x that the next position will (exist and) belong to $A\}$ for any $A \subseteq P$, let $Z:=P-P_{0}$; then $\mathscr{U}:=\left(u_{j}\right)_{j \in J}$ is a game system, $u_{j} P=Z$ for each $j \in J$, and Z is the set of nonfinal positions of \mathscr{G}. On the other hand, if some \mathscr{U} is a game system, then \mathscr{U} can be obtained in the above mentioned way, to a suitable \mathscr{G}. See [5], § $2.29-30, \S 2$ (47), (26) etc.]
1.4. Under an operator we shall mean a partial unary operation in \mathscr{T}, i.e., a mapping of a subset of \mathscr{T} into \mathscr{T}. We shall need, in particular, these operators: $u \rightarrow u^{k}(k=0,1, \ldots)$, defined as the k th power in the monoid $\mathscr{T} ; u \rightarrow \tilde{u}:=P-u P \cup$ $\cup u ; u \rightarrow \bar{u}:=(-1) . u .(-1) ; u \rightarrow u^{\prime}:=\underline{u} P \cap \bar{u}$ (i.e., $u^{\prime} A=u P-u(\overline{P-A})$); $u \rightarrow \check{u}$ where $\breve{u} A=u A \cup(A-u P)$.

It holds: if $u \in \mathscr{T}_{\mathrm{RM}}\left(P, P_{0}\right)$ (where $\left.P_{0} \subseteq P\right)$, then $u^{\prime} \in \mathscr{T}_{\mathrm{RM}}\left(P, P_{0}\right), u^{\prime \prime}=u$; if $u_{1} \in \mathscr{T}_{\mathrm{RM}}\left(P, P_{0}\right)$, then u^{\prime} is the greatest (under \subseteq) element of $\left\{u_{2} \mid u_{2} \in \mathscr{T}_{\mathrm{RM}}\right.$, $\left(u_{1}, u_{2}\right)$ is a game system $\}$. (See [5], § 4 (26)-(28), §4.8.4 etc.) An SN-game \mathscr{G} is said to be complete iff card $J=2$ and $\left(u_{j_{2}}\right)^{\prime}=u_{j_{1}}$ for $\left\{j_{1}, j_{2}\right\}=J$ (where J, u_{j} etc. have the meaning given by the remark in Sec. 1.3). Complete games have very significant properties, similarly as their particular case - two-player Bergean games with perfect information. (Cf. [5], §§ 4d, 6c, and [6].)
1.5. For $R_{1}(),. \ldots, R_{k}($.$) (Sec. 1.2), under the upper [lower] R_{1} \ldots R_{k}$-modification of $u(\in \mathscr{T})$ we mean $v \in \mathscr{T}_{R_{1} \ldots R_{k}}$ such that (i) $u \subseteq v[u \supseteq v]$, and (ii) $v \subseteq w$ $[v \supseteq w]$ whenevęr $w \in \mathscr{T}_{R_{1} \ldots R_{k}}$ and $u \subseteq w[u \supseteq w]$; of course, there exists at most one upper [lower] $R_{1} \ldots R_{k}$-modification of u, thus the forming of upper [lower] $R_{1} \ldots R_{k}$-modifications may be considered an operator. (Cf. [2], Sec. 31 B .)

Let $1 \nVdash u \in \mathscr{T}_{\mathrm{M}}$; the well-known construction of the transfinite powers of u can be expressed in such a way: $u^{0}:=1, u^{\xi}:=\lim _{0 \leq \eta<\xi} u . u^{\eta}(\xi>0$ is an ordinal number); we put formally $u^{\infty}:=u^{\xi}$ for (any) ξ such that $u^{\xi}=u^{\xi+1}$ (∞ is not an ordinal number). It is known that u^{∞} is the upper [lower] U-modification of u if $u \in \mathscr{T}_{\text {EM }}$ $\left[u \in \mathscr{T}_{\mathrm{IM}}\right]$. For each $u \in \mathscr{T}_{\mathrm{M}}, \mathbf{1} \cup u[1 \cap u]$ belongs to $\mathscr{T}_{\mathrm{EM}}\left[\mathscr{T}_{\mathrm{IM}}\right]$, and $u^{\Delta}:=$ $:=(1 \cup u)^{\infty}\left[u_{\nabla}:=(1 \cap u)^{\infty}\right.$] is the upper UEM-modification [lower UIM-modification] of u. The modifications ${ }^{\Delta},{ }_{\nabla}$, and also the operators $u \rightarrow u_{\Delta}:=(\tilde{u})_{\nabla}, u \rightarrow$ $\rightarrow u^{\nabla}:=(\tilde{u})^{\triangle}\left(\right.$ where $u \in \mathscr{T}_{M}$; of course, then $\left.\tilde{u} \in \mathscr{T}_{M}\right)$ are important in game considerations.

For $u \in \mathscr{T}_{M}$ it holds: $\overline{u^{\Delta}}=(\bar{u})_{\nabla}, \overline{u_{\nabla}}=(\bar{u})^{\Delta}, u_{\Delta}=\overline{\left(u^{\prime}\right)^{\Delta}}, u^{\nabla}=\overline{\left(u^{\prime}\right)_{\nabla}} ;$ if, moreover, $u \in \mathscr{T}_{\text {RM }}$, then $u^{\Delta}=\overline{\left(u^{\prime}\right)_{\Delta}}, u_{\nabla}=\overline{\left(u^{\prime}\right)^{\nabla}} .([5], \S 5.18$.
2.1. To a given type $\left(P, P_{0}\right)$ we introduce: $Z:=P-P_{0}, Z:=\underset{0 \leqq l<\omega_{0}}{ } Z^{\{0, \ldots, l)}$, $S:=((\exp P)-\{\emptyset\})^{Z}$, and

$$
P:=\bigcup_{0 \leqq l \leqq \omega_{0}}\left\{\mathrm{x}=\left(x_{k} \mid 0 \leqq k<1+l\right) \mid x_{k} \in Z \text { if } 0 \leqq k<l, x_{k} \in P_{0} \text { if } k=l\right\},
$$

where ω_{0} is the first infinite ordinal number. For $z=\left(z_{0}, \ldots, z_{l}\right) \in \boldsymbol{Z}$ we define $\kappa(\mathbf{z}):=z_{l}, l(\mathbf{z}):=l$. For $\mathbf{x}=\left(x_{k} \mid 0 \leqq k<1+l\right) \in \mathbf{P}$ we write shortly $\mathbf{x}=\left(x_{k}\right)$ and define $l(x):=l$. For $\sigma \in S, x \in P$ we put

$$
\begin{aligned}
& \mathrm{s}(\sigma):=\left\{x=\left(x_{k}\right) \mid x \in P, x_{k+1} \in \sigma\left(x_{0}, \ldots, x_{k}\right) \text { if } 0 \leqq k<l(x)\right\}, \\
& \mathrm{s}(x, \sigma):=\left\{x=\left(x_{k}\right) \mid x \in \mathrm{~s}(\sigma), x_{0}=x\right\} \quad(\neq \emptyset) .
\end{aligned}
$$

2.2. Let $u \in \mathscr{T}_{R M}\left(P, P_{0}\right)$ in this section. We put $S(u):=\left\{\sigma \mid \sigma \in(\exp P)^{z}\right.$, $\boldsymbol{\kappa}(\mathbf{z}) \in u(\sigma \mathbf{z})$ for every $\mathbf{z} \in \mathbf{Z}\}(\subseteq S)$. Further, let $\boldsymbol{u} \in(\exp P)^{\exp P}$ be given by $u A:=$ $:=\{x \mid x \in P, s(x, \sigma) \subseteq A$ for some $\sigma \in S(u)\}$. There holds (see [5], §3a): $u \emptyset=\emptyset$; $A \subseteq B \subseteq P \Rightarrow u A \subseteq u B ;$ if $\left(u_{j}\right)_{j \in J}$ is a game system such that $u_{j} P=Z$ (cf. Sec. 1.3),
then $\bigcap_{j \in J} A_{j}=\emptyset$ implies $\bigcap_{j \in J} u_{j} A_{j}=\emptyset$ for any $\left(A_{j}\right)_{j \in J} \in(\exp P)^{J}$ ([5], § 4.18). But if $v:=u^{\prime}($ cf. Sec. 1.4), it may happen there is $A \subseteq P$ such that $\boldsymbol{v} A=u P-u(P-A)$ does not hold ($[5], \S \S 4.21 .5,4.23-24$); this very important fact concerns immediately some connections with axiomatic set theories. [In terms of the game interpretation mentioned in the remarks in Sec. 1.3, $P(\exp P)$ is the set of variants (aims) at $\mathscr{G}, S\left(u_{j}\right)$ is the set of player j 's strategies; $x \in u_{j} A$ means that j can enforce A from x, etc. Cf. [5], §§ 2c, 3a.]
3.1. In Sec. 3, let $\left(P, P_{0}\right)$ be a type, $u \in \mathscr{T}_{\operatorname{Rix}}\left(P, P_{0}\right), v:=u^{\prime}$. For $p \in(\exp P)^{\exp P}$ ($=$ the set of aim-mappings at $\left(P, P_{0}\right)$) we define $\bar{p} \in(\exp P)^{\exp P}$ by $\bar{p} A=P$ -$-p(P-A)$ (cf. Sec. 1.4!). Similarly as in [5] (§5.8, or [3], too), we shall denote a general aim-mapping by symbol $\boldsymbol{p}^{\varepsilon}$ and we shall write $\boldsymbol{p}_{\varepsilon}:=\overline{\boldsymbol{p}^{\varepsilon}}$ (this symbolism admits various concrete forms, e.g.: $\boldsymbol{p}^{\varepsilon}=\boldsymbol{p}^{\Delta}, \boldsymbol{p}_{\square}, \tilde{\boldsymbol{p}}, \boldsymbol{p}_{\varepsilon}=\boldsymbol{p}_{\Delta}, \boldsymbol{p}^{\square}, \underset{\sim}{\boldsymbol{p}}$, respectively). To such $\boldsymbol{p}^{\varepsilon}$ we define $u^{\varepsilon}:=\boldsymbol{u} \cdot \boldsymbol{p}^{\varepsilon} ;{ }^{\varepsilon}$ itself is then considered an operator (dom ${ }^{\varepsilon}=$ $=\mathscr{T}_{\mathrm{RM}}\left(P, P_{0}\right)$), and p^{ε} is said to be the aim-meaning of ${ }^{\varepsilon} \cdot p^{\varepsilon}$ and ${ }^{\varepsilon}$ are said to be normal iff (cf. Sec. 2.2!) $\left(v^{\varepsilon} A=\right) \boldsymbol{v} \cdot \boldsymbol{p}^{\varepsilon} A=u P-u\left(P-p^{\varepsilon} A\right)\left(=P-u \cdot p_{\varepsilon}(P-A)=\right.$ $=P-u_{\varepsilon}(P-A)=\overline{u_{\varepsilon}} A$), i.e., iff $\left(u^{\prime}\right)^{\varepsilon}=\overline{u_{\varepsilon}}$ (identically). In general, always $\left(u^{\prime}\right)^{\varepsilon} \subseteq$ $\subseteq \bar{u}_{\varepsilon}$, and ${ }^{\varepsilon}$ is normal iff ${ }_{\varepsilon}$ is normal.
3.2. Some operators (e.g., $u \rightarrow u^{0}(=1)$) have simple normal aim-meanings. The union (intersection, product) of two operators having normal aim-meanings need not have an aim-meaning. But if $u \rightarrow u^{\varepsilon}$ is an operator having a [normal] aim-meaning, then $u \rightarrow u . u^{\varepsilon}, u \rightarrow \check{u} . u^{\varepsilon}$, and $u \rightarrow \tilde{u} . u^{\varepsilon}$ have [normal] aim-meanings.
3.3. (Cf. [3], $\S \S 2.8 .1,6.9 .4$, or [5], part IV.) Let $\boldsymbol{p}^{\varepsilon}, \boldsymbol{p}_{\varepsilon}(\varepsilon=\triangle, \nabla, \square)$ be such that

$$
\begin{gathered}
\mathbf{x} \in \mathbf{p}^{\Delta} A\left[\mathrm{x} \in \mathbf{p}_{\Delta} A\right] \Leftrightarrow x_{k} \in A \text { for some }[\mathrm{each}] k, \\
\mathbf{p}^{\nabla} A=\mathbf{P}_{\mathbf{F}} \cup \boldsymbol{p}^{\Delta} A, \quad \mathbf{p}_{\nabla} A=\left(\mathbf{P}-\mathbf{P}_{\mathbf{F}}\right) \cap \mathbf{p}_{\Delta} A,
\end{gathered}
$$

$x \in \boldsymbol{p}^{\square} A \Leftrightarrow$ for each $\quad k \quad$ there exists $\quad r \geqq k \quad$ such that $\quad x_{r} \in A$, $x \in P_{\square} A \Leftrightarrow$ there exists k such that $x_{r} \in A$ for each $r \geqq k$,
where

$$
\begin{gathered}
\mathbf{x}=\left(x_{k}\right) \in \mathbf{P}, \quad A \subseteq P, \quad 0 \leqq k, \quad r<1+l(\mathbf{x}) \\
\mathbf{P}_{\mathbf{F}}:=\left\{\mathbf{x} \mid \mathrm{x} \in \mathbf{P}, l(\mathbf{x})<\omega_{0}\right\}
\end{gathered}
$$

it is easy to see that, indeed, $\boldsymbol{p}_{\varepsilon}=\overline{\boldsymbol{p}^{\varepsilon}}$ for $\varepsilon=\triangle, \nabla, \square$ (cf. Sec. 3.1).
Now, u^{ε} and u_{ε} are defined twice for $\varepsilon=\triangle, \nabla$ (and $u \in \mathscr{T}_{R M}$), namely by Sec. 3.1 and 3.3, and by 1.5; nevertheless, it can be proved that these two definitions yield the same concepts. Moreover, it can be shown, among others, that $\boldsymbol{p}^{\boldsymbol{\varepsilon}}, \boldsymbol{p}_{\boldsymbol{\varepsilon}}$
$(\varepsilon=\triangle, \nabla, \square)$ are normal. From the definitions it follows trivially that $u^{z}, u_{\varepsilon} \in$ $\in \mathscr{T}_{M}(P), u^{\Delta} \emptyset=\emptyset, u_{\Delta} P=P$, and $u_{\nabla} \subseteq u_{\Delta} \subseteq u_{\square} \subseteq u^{\square} \subseteq u^{\Delta} \subseteq u^{\nabla}, u_{\Delta} \subseteq \mathbf{1} \subseteq$ $\subseteq u^{\Delta}, u^{\nabla}=u^{\Delta} \cdot\left(1 \cup \underline{P_{0}^{\prime}}\right), u_{\nabla}=u_{\Delta} \cdot(1 \cap \underline{Z})$, etc.
3.4. It holds $\check{u}=\overline{\bar{v}} \in \mathscr{T}_{\mathrm{RM}}(P, \emptyset)$; we shall write (cf. Sec. 3.2!) $u^{-\varepsilon}:=\breve{\boldsymbol{u}} \cdot \boldsymbol{u}^{\varepsilon}$, $u_{-\varepsilon}:=\check{u} . u_{\varepsilon}$ (then $u_{-\varepsilon}=\overline{\left(u^{\prime}\right)^{-\varepsilon}}$ if $\left.u_{\varepsilon}=\overline{\left(u^{\prime}\right)^{\varepsilon}}\right)$.

Clearly, $(\breve{u})^{\nabla}=(\breve{u})^{\Delta},(\breve{u})_{\nabla}=(\breve{u})_{\Delta}$. The following important equalities hold:

$$
\begin{aligned}
& (\check{u})^{\varepsilon}=u^{\varepsilon}, \quad(\check{u})_{\varepsilon}=u_{\varepsilon} \text { for } \varepsilon=\Delta, \square, \\
& u^{\square}=\left(u^{-\Delta}\right)_{-\Delta}, \quad u_{\square}=\left(u_{-\Delta}\right)^{-\Delta} .
\end{aligned}
$$

(To derive the propositions presented in this paper, it is natural to use the latter two equalities to prove the normality of ${ }^{\square}$ and ${ }_{\square}$; nevertheless, there are other ways, cf. [3], § 6a, or § 7b, or § 9b.)
4.1. Theorem. Let $\left(P, P_{0}\right)$ be a type, $u \in \mathscr{T}_{\mathrm{RM}}\left(P, P_{0}\right)$. Then:
A.

$$
\begin{equation*}
u^{\nabla} \cdot u^{\varepsilon}=u^{\nabla} \quad \text { for } \quad \varepsilon=\triangle, \nabla \tag{1}
\end{equation*}
$$

$u^{\Delta} \cdot u^{\varepsilon}=u^{\varepsilon} \quad$ for $\quad \varepsilon=\triangle, \nabla, \square$
$u^{\varepsilon} \cdot u_{\square}=u_{\square} \cdot u_{\square}=u_{\square}$ for $\varepsilon=\triangle, \square$
$u_{\varepsilon} \cdot u^{\Delta} \cdot u_{\Delta}=u^{\Delta} \cdot u_{\Delta} \quad$ for $\quad \varepsilon=\triangle, \square$
$u_{\varepsilon} \cdot u^{\Delta} \cdot u_{\nabla}=u^{\Delta} \cdot u_{\nabla} \quad$ for $\varepsilon=\nabla, \triangle, \square$
$u^{\nabla} \cdot u^{\square} \cdot u^{\nabla}=u^{\square} \cdot u^{\nabla}$
$u_{\nabla} \cdot u^{\square} \cdot u_{\nabla}=u^{\square} \cdot u_{\nabla}$
$u_{\Delta} \cdot u^{\nabla} \cdot u^{\square}=u^{\nabla} \cdot u^{\square}$
$u_{\varepsilon} \cdot u^{\nabla} \cdot u_{\Delta}=u^{\nabla} \cdot u_{\Delta} \quad$ for $\varepsilon=\Delta, \square$ $u_{\varepsilon} \cdot u^{\nabla} \cdot u_{\nabla}=u^{\nabla} \cdot u_{\nabla} \quad$ for $\varepsilon=\Delta, \square$
B. For $j=1, \ldots, 10$, let $\left(j^{\prime}\right)$ be obtained from (j) by the replacement of each $u^{\delta}\left[u_{\delta}\right]$ by $u_{\delta}\left[u^{\delta}\right], \delta=\triangle, \nabla, \square, \varepsilon$. Then $\left(j^{\prime}\right)$ holds, too.
C. If (e) is obtained from the equality in (j) or $\left(j^{\prime}\right)(j=1,3,4,9,10)$ by choosing $\varepsilon:=\varepsilon_{0} \in\{\triangle, \nabla, \square\}$ where ε_{0} does not belong to those written in (j), then for suitable $\left(P, P_{0}\right)$ and u the equality (e) does not hold.
4.2. Part B is based on the normality of the operators under consideration. Counter-examples for proving Part C can be easily presented. The theorem contains
assertions which follow immediately from the other ones (by means of the simple properties mentioned in Sec. 3.3: (10) is a corollary of (9); in (3), (4), (5), (9), (10), always only one case is "essential" while the others follow from it and (2); (1) and (2) can be "reduced", too).
4.3. (We suppose the same as in Sec. 3.1; recall that symbol $\boldsymbol{p}^{\varepsilon}$ admits also \boldsymbol{p}_{\square} etc. as concrete "values".) For $\boldsymbol{x}=\left(x_{k}\right) \in \boldsymbol{P}$ and $0 \leqq m<1+l(\boldsymbol{x})$, the sequence $\mathbf{x}^{[m]}:=\left(x_{m+k} \mid 0 \leqq k<1+(l(\mathbf{x})-m)\right)$ (here $\omega_{0}-m=\omega_{0}$) belongs to \boldsymbol{P} and is said to be a remainder of \mathbf{x}, while \mathbf{x} is called an extension of $\mathbf{x}^{[m]}$. We say that $\boldsymbol{A} \subseteq \boldsymbol{P}$ has the property $\mathrm{I}_{0}\left[\mathrm{I}^{0}\right]$ iff \boldsymbol{A} is closed under forming remainders [extensions]. Clearly, \boldsymbol{A} has $\mathbf{I}^{0}\left[\mathrm{I}_{0}\right]$ iff $\boldsymbol{P}-\boldsymbol{A}$ has $\mathrm{I}_{0}\left[\mathrm{I}^{0}\right]$. We say that an aim-mapping $\boldsymbol{p}^{\varepsilon}$ has property $K \in\left\{\mathbf{I}^{0}, \mathrm{I}_{0}\right\}$ iff $\boldsymbol{p}^{\varepsilon} A$ has this property for any $\boldsymbol{A} \subseteq \boldsymbol{P}$. Thus, if $\boldsymbol{p}^{\varepsilon}$ has $\mathbf{I}^{0}\left[\mathrm{I}_{0}\right]$, then $\boldsymbol{p}_{\varepsilon}$ has $\mathrm{I}_{0}\left[\mathrm{I}^{0}\right]$. In particular, $\boldsymbol{p}^{\varepsilon}\left[\boldsymbol{p}_{\varepsilon}\right]$ has the property $\mathrm{I}^{0}\left[\mathrm{I}_{0}\right]$ for $\varepsilon=\triangle, \nabla, \square$.

Lemma 1. Let $\boldsymbol{p}^{\varepsilon}$ either (1) be \boldsymbol{p}^{Δ}, or (2) have the property I_{0}. Let $\boldsymbol{\sigma} \in \boldsymbol{S}(u)$, $x \in P, A \subseteq P, \boldsymbol{x}=\left(x_{k}\right) \in \mathrm{s}(x, \boldsymbol{\sigma}) \subseteq \boldsymbol{p}^{\varepsilon} A, 0 \leqq m<1+l(\mathbf{x})$. Then $x_{m} \in \mathcal{u}^{\varepsilon} A$ (1) if $\left\{x_{0}, \ldots, x_{m-1}\right\} \cap A=\emptyset,(2)$ always (respectively).

Lemma 2. Let $\boldsymbol{p}^{\varepsilon}$ have the property $\mathbf{I}^{0}\left[\mathrm{I}_{0}\right]$. Then $u^{\Delta} \cdot u^{\varepsilon}=u^{\varepsilon}\left[u_{\Delta} \cdot u^{\varepsilon}=u^{\varepsilon}\right]$.
(Cf. [3], §§ 2.1.2, 2.4.2, 2.6.2, $2(14)-(15), 6.2,6.5 .1,6.5 .3$.
4.4. Now, assertions (2) and (3) of the theorem follow immediately by means of Sec. 4.3. In the other "essential" equalities, one inclusion follows trivially from $u_{\varepsilon} \subseteq \mathbf{1} \subseteq u^{\varepsilon}(\varepsilon=\triangle, \nabla) ;$ the other inclusion can be proved by means of Sec. 4.3 and 3.3.

As an example, let us present the idea of the proof of (8). Let $A \subseteq P$; there exists $\sigma_{1} \in \boldsymbol{S}(u)\left[\sigma_{2} \in \boldsymbol{S}(u)\right]$ such that $\mathrm{s}\left(x, \boldsymbol{\sigma}_{1}\right) \subseteq \boldsymbol{p}^{\square} \boldsymbol{A}\left[\mathrm{s}\left(x, \boldsymbol{\sigma}_{2}\right) \subseteq \boldsymbol{p}^{\nabla} u^{\square} A\right]$ for each $x \in u^{\square} A\left[x \in u^{\nabla} u^{\square} A\right]$. We choose $\boldsymbol{\sigma} \in \boldsymbol{S}(u)$ in the following way: If $\mathbf{z}=$ $=\left(z_{0}, \ldots, z_{l}\right) \in \boldsymbol{Z}$, then if $z_{l} \notin u^{\square} A$, then $\boldsymbol{\sigma z}=\sigma_{2} \mathbf{z}$, if $z_{l} \in u^{\square} A$, then $\boldsymbol{\sigma z}=$ $=\sigma_{1}\left(z_{r}, \ldots, z_{l}\right)$ where $r=\min \left\{k \mid 0 \leqq k \leqq l,\left\{z_{k}, \ldots, z_{l}\right\} \subseteq u^{\square} A\right\}$. Let $x \in u^{\nabla} u^{\square} A$, $\mathbf{x}=\left(x_{k}\right) \in \mathrm{s}(x, \boldsymbol{\sigma})$. Using the evident relations $A \cap P_{0} \subseteq u^{\square} A$ and $P_{0} \cup u^{\square} A \subseteq$ $\subseteq u^{\nabla} u^{\square} A$, and the equality $u^{\nabla} u^{\square} A=u^{\Delta}\left(P_{0} \cup u^{\square} A\right)$ (Sec. 3.4), and applying both the cases - successively (2) (for $x \in u^{\square} A$ firstly) and (1) - of Lemma 1, we obtain that $x \in \boldsymbol{p}_{\triangle}\left(u^{\nabla} u^{\square} A\right)$. Hence, $x \in u_{\Delta} u^{\nabla} u^{\square} A$ for any $A \subseteq P$ and $x \in u^{\nabla} u^{\square} A$. Consequently, $u^{\nabla} u^{\square} A \subseteq u_{\Delta} u^{\nabla} u^{\square} A \subseteq u^{\nabla} u^{\square} A$.
5. In this paper, only a minor part of the results on SN -games ([3], [5] etc.) was used; especially, the min-max results (which were proved in versions being in several ways more general, by various approaches and in connection with the investigation of the game-theoretical meaning of extreme properties of certain operators or their generalizations) have been reduced to the normality of some
operators having aim-meanings, graphs of SN-games have not been used, etc. [Further, game-theoretical considerations can be performed even for \mathscr{T}_{m}; I have studied the latter possibility (cf. [6]), using some new operators (e.g., $u \rightarrow u^{*}, u^{*} A=$ $=u \emptyset \div u(P-A) \div u P(\div$ is the symmetric difference $))$.]

References

[1] E. Čech: Topologické prostory. Časopis Pěst. Mat. Fys. 66 (1937), 225-264.
[2] E. Čech: Topological spaces. (Revised by Z. Frolik and M. Katětov.) Academia, Prague, 1966.
[3] J. Hanák: Simultaneous nondeterministic games. Mathem. Theory of Polit. Decisions, Research Memorandum No. 3, J. E. Purkyně University, Brno. (December 1967. Cyclostyled, 76 pp .)
[4] J. Hanäk: Topological SN-games. Mathem. Theory of Polit. Decisions, Research Memorandum No. 7, J. E. Purkyně University, Brno. (April 1968. Cyclostyled, 20 pp.)
[5] J. Hanäk: Simultaneous nondeterministic games (I)-(IV). Arch. Math.; I: 5 (1969), 29-60; II: 6 (1970), 115-144; III: 7 (1971), 123-144; IV: to appear.
[6] J. Hanák: Equilibrium points in some SN-games. (To appear.)
[7] K. Koutský: Určenost topologických prostorů pomocí úplných systémů okolí bodũ. Publ. Fac. Sci. Univ. Masaryk 374 (1956), 153-163.
[8] K. Koutský, V. Polák and M. Sekanina: On the commutativity of modification. Spisy Prírod. Fak. Univ. Brno 454 (1964), 275-292.
[9] J. Lihová: About the first and the second constellations belonging to the topology u. Acta Fac. Rerum Natur. Univ. Comenian. mimoriadne číslo 1971, 57-62.
[10] Z. P. Mamuzić: Note sur les espaces de voisinages (V) et les ordres semi-topogènes. General Topology and its Relations to Modern Analysis and Algebra, II. (Proc. Second Prague Topological Sympos., 1966). Academia, Prague, 1967, 246-247.
[11] V. Polák, N. Poláková and M. Sekanina: Remarks to inner constellation in topological spaces. Spisy Přírod. Fak. Univ. Brno 507 (1969), 317-332.
[12] J. Schmidt: Symmetric approach to the fundamental notions of general topology. General Topology and its Relations to Modern Analysis and Algebra, II. (Proc. Second Prague Topological Sympos., 1966). Academia, Prague, 1967, 308-319.
[13] M. Sekanina: Úplné systémy okolí množin v obecných topologických prostorech. Publ. Fac. Sci. Univ. Masaryk 374 (1956), 185-192.
[14] М. Секанина: Системы топологий на данном множестве. Чехослов. матем. журнал 15 (90) (1965), 9-29.
J. E. PURKYNĚ UNIVERSITY, BRNO

