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TOPOLOGICAL EMBEDDINGS IN EUCLIDEAN SPACE

L. V. KELDYS and A. V. CERNAVSKII

Moskva

Here we want to give an account of the work on geometric topology which has
been carried out in our seminar at the Steklov Institute (Moskva). It can be divided
into three parts:

— structure of the homeomorphism group of R" and locally flat embeddings of
manifolds in R".

— topological embeddings of manifolds, polyhedra and compacta in R".

— monotone mappings of manifolds.

1. Homeomorphisms of R" and locally flat embeddings

Let us recall that a homeomorphism h of R" is said to be stable if it is a finite
product of homeomorphisms, each of which leaves fixed all points of an open set.
At present a most important problem in geometric topology is to decide whether
every orientation-preserving homeomorphism of R" is stable. There are many reasons
for this. The only known orientation-preserving homeomorphisms are stable. The
stable homeomorphisms enjoy many properties one might desire: they can be appro-
ximated with piecewise linear ones (for n =+ 4), they can be connected with the identity
with a continuous one-parameter family of homeomorphisms g, (g, = 1, g, is a given
homeomorphism), i.e., an isotopy, etc. Also, the positive answer to this problem will
imply many important consequences. This problem being unsettled as yet for n > 3,
let us weaken the definition.

We call a homeomorphism k-stable if it can be decomposed into a product
h = hy... h; of homeomorphisms each of which has at least a linear k-simplex of
fixed points. This is the same as saying that h is a product : h = hh’ of a stable
homeomorphism h’ and of one homeomorphism A, with a k-simplex of fixed points.
The strongest result obtained up to the present is the following:

Theorem 1.1 (Cernavskii [20]). Each homeomorphism of R" is (n — 3)-stable.

This result has applications to the embedding problem. We shall recall that
a cell Q embedded in R” is said to be trivial if there exists a homeomorphism & of R"
onto itself such that hQ is a standard simplex. One says that a manifold M in R" is
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locally flat if each point in M has a neighbourhood in M which is a cell trivially
embedded in R". It has been shown by B. Mazur [14] and M. Brown [2] (for the
case k = n — 1) and by J. Stallings [16] (for the case k < n — 3) that locally flat
k-spheres in R" are unknotted if k &= n — 2, i.e., such a sphere can be transformed
into a standard one by an ambient homeomorphism. Now we have the following

Corollary. If k < n — 3 and S is a locally flat k-sphere in R", then there exists
an ambient isotopy of R" which transforms S into a standard sphere [20].

The proof of theorem 1.1 is based on two recent results. The first one, a result
obtained by T. Homma [3.], asserts that topological embeddings of k-cells in R"
can be approximated by piecewise linear (simplicial) ones if k < n — 3.

The second result is the theorem on the union of locally flat cells:

Theorem 1.2 (Cernavskii [19]). If two locally flat cells in R", B and B, have
only their boundaries in common and if k + n — 2,n = 5, then their union B U B
is a locally flat sphere.

As a matter of fact both results have been proved in a much more general form,
but we pass it here.

Up to the present we have been discussing embeddings in codimensions more
than two (n — k > 2). The codimension two can be called a “knotting” codimension:
because by the results of Stallings, Mazur and Brown it is the unique codimension
where knotting is possible. (Of course, in the above we mean locally flat spheres.)
Here we can state a result of Sosinskii. He has defined the connected sum of locally
flat knots and has proved the

Theorem 1.3 (Sosinskil [15]). Each knot can be decomposed into a finite sum
of indecomposable summands.

The definition is based on the fact that for each locally flat knot there exists an
equivalent knot which contains a linear (n — 2)-simplex. Then the definition may be
given as usual by putting together the knots along a common linear simplex.

Defining, further, the notion of infinite connected sum which can be clarified
by an illustration (page 219); he has proved that this sum (always equal to a sphere
locally flat at all points except possibly the limit point) is also locally flat at the limit
point if and only if it contains only a finite number of knotted summands.

This also gives first examples of isolated wild points of embeddings in codimen-
sion 2, n > 3, that is of points where the embedding is not only non-flat, but also is
not equivalent to a polyhedral embedding. With this construction he has obtained
(see [15]) some examples of a union of two flat cells in codimension 2, n > 3, with
only their boundaries in common, which is a sphere with a unique (or with many if
you wish) wild points.

We should like to note here the following
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Corollary to Theorem 1.2 (see [19]). No isolated wild point can occur in
codimension distinct from 2.

By similar methods Cernavskii has proved some propositions about embeddings
of polyhedra. Here one encounters additional difficulties and the results have been
obtained only for k < %n — 1.

Theorem 1.4 (Cernavskii [18], [23]). If P is a k-polyhedron topologically
embedded in R", where k < %n — 1, and if for a triangulation of P all open
simplexes are locally flat in R", then there exists a homeomorphism of R", h, such
that hP is a rectilinear polyhedron in R".

One can choose this homeomorphism to be an e-homeomorphism for any
given ¢ > 0.

A

5 @

2. Embeddings in R?

If the embedding of a surface M? is “wild” (not locally flat), then there exists
no homeomorphism of R* onto itself which sends M? onto a polyhedral surface. Let
us recall now that a pseudoisotopy of a space X is a one-parameter continuous collec-
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tion of maps of X onto itself, g,, where g, is a homeomorphism for all t < 1. As usual,
g is the identity. For metric space X g, is called an e-pseudoisotopy if d(x, g,(x)) < &
for every x € X and for all t € [0, 1]. Now we can state the following

Theorem 2.1 (L. KeldyS [6], [7]). For each surface M?* (with or without
boundary) embedded in R* (in an arbitrary way) and for any ¢ > 0 there exists
a polyhedral surface M* = R® and an e-pseudoisotopy g, of R® such that

1) g:M7 = M?;

2) the set of all points of R® which have nondegenerate inverse images of

points, g1 'x, is a zero-dimensional subset of M* contained in the set of wild points
of M>.

If M? is a topological 2-sphere, then this result implies (with the aid of
Alexander’s theorem) the existence of an ambient pseudoisotopy which sends the
standard sphere onto M?, but, of course, it is not an e-pseudoisotopy.

For spheres there are related results obtained by the American school (Bing [1],
Linninger [13] and others), but the results obtained deal with domains bounded by
a sphere (crumpled cubes) and not with pseudoisotopies of the ambient space. L.
Keldys has obtained the same result (but without the condition concerning the dimen-
sion of the set of nondegenerate inverses) for topological k-polyhedra in R” for all n
in the trivial range (k < n/2 — 1) [6]. Previously, L. Keldy3 [5] had proved a similar
result for the embedding of 0-dimensional compacta in R".

As regards the embedding problem in three-dimensional space it may be said
that the situation is fairly clear now after the results of Bing, Moise and others, but
the methods of proof remain as yet very complicated. It is our hope that there are
ways of simplifying constructions and clarifying the basic ideas.

Now we come to results which deal with embedding of compacta in R". Let us say
that a compactum in R"is cellularly divided if it is an intersection of a decreasing
sequence of disjoint finite unions of cells:

© ni

K=N UQ;;, each Q;,,;belongstoa Q;; ;
1

i=1 j=
0N Qiy=0, i=*j.

For example a zero-dimensional compactum satisfies this condition if it is tame and
a continuum does if it is cellular in the sense of M. Brown [2].

Theorem 2.2 (Stan’ko [21]). Among all one-dimensional compacta, those
which can be embedded in R® in a cellularly divided manner are exactly tree-like
compacta (i.e., compacta which are projective limits of finite sums of trees).

Theorem 2.3 (Stan’ko [21]). For each tree-like compactum K in R® there
exists a homeomorphic e-push h of K into R® such that hK is cellularly divided in R3.
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Stan’ko has found a criterion for a compactum in R* to be cellularly divided
and we state here the following

Corollary (Stan’ko). In R? each subcontinuum of a cellular one-dimensional
continuum is cellular itself.

3. Monotone mappings

We recall that a mapping of a manifold is point-like if the inverse images of
points are cellular. A mapping of a manifold onto a manifold may be called cellular
if the inverse images of cellular sets are cellular.

There are some problems concerning point-like mappings. It is well known that
(if n = 3) the image of a manifold under a point-like mapping need not be a manifold.
Suppose we have a point-like mapping f of a manifold M onto a manifold N.

1. Is N homeomorphic to M? (Bing)

2. If N is homeomorphic to M, is f pseudoisotopic to a homeomorphism? Or,
in another form, can f be approximated by a homeomorphism? (The inverse statement
is correct, and if the answer is positive then we have a nice characterization of
mappings which can be approximated by homeomorphisms.)

3. Is a point-like mapping of a manifold onto a manifold cellular?

In this direction some results have been obtained by V. Kompaniec. In a joint
paper by Cernavskii and Kompaniec point-like mappings of a sphere onto itself have
been considered, and it was proved:

Theorem 3.1 (Kompaniec and Cernavskil [9]). A point-like map of a sphere
onto itself is cellular (n + 4).

Later, Kompaniec has obtained a general criterion for cellular mappings of
piecewise linear manifolds. It is of a homotopic character:

Theorem 3.2 (Kompaniec [11]). If f: M — N is a point-like mapping, then
for any open set in N f induces an isomorphism between its homotopic groups and
those of its preimage. If f : M — N is a mapping and if for any open set U in N its
preimage f ~1U has the same homotopic groups as U, then the mapping f is cellular.

The following corollaries are worth mentioning:

Cellular mappings induce homotopic equivalence.
If n #* 4, then point-like mappings are cellular.
If n =z 5 and one of the two manifolds is R" or S", then so is the other.

Previously Kompaniec has proved that a mapping of a sphere onto itself is
point-like if there are only countably many nondegenerate inverse images of points.
This generalizes the results of M. Brown [2], Kwun [12].
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Now we recall L. Keldys’s example of a monotone mapping f of a 3-cube I*® onto
any cube of a higher dimension k [4]. Later L. Keldy3 observed that the mapping
she had constructed was the limit of a sequence of embeddings of I® into I* of
a special kind.

An embedding h of I” in I is called e-dense if the e-neighbourhood of h(I)
coincides with I, It turns out that for any & > 0 I® may be embedded in I¥, k > 3,
e-densely and in such a way that each pair of points in h(I*) whose distance is less
than ¢ can be connected by an arc in h(I°) of diameter less than 2¢. The mapping f
is the limit of such embeddings.

For a square such embeddings cannot exist for small ¢, and this is the reason
why I? cannot be mapped onto I¥, k > 2, in a monotone way.

This construction has been generalized by Cernavskii who proved that I” can
be mapped onto any cube of higher dimension with preimages of points acyclic up to
the dimension r, where 2r < p — 3. This result is precise because of a theorem of
Frum-Ketkov [17]. These mappings can also be obtained as limits of special embed-
dings. They may be changed into open mappings by general method of L. Keldys [8].
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