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BAIRE SETS WHICH ARE BORELIAN SUBSPACES 

Z. FROLIK 

Cleveland—Praha 

J. Knowles and C. Rogers [2] recognized the good behaviour of Borelian 
subspaces which are Baire sets; these sets are called BB-sets here (while the term 
descriptive Baire sets was used in [2]). They proved the characterization (2) of BB's 
in Theorem B below, and used that characterization in developing of properties of 
BB's following the patterns used in [ l ] or [3] for Borelian spaces; the resulting proofs 
were rather complicated. 

Here we want to indicate a smooth development of properties of BB's. Theorems 
B(2), C and D were proved in [2]. The complete proofs (with Theorems E and D in 
a more general setting) with appear in Proc Roy. Soc A (1967) under a similar title. 

By a space we always mean a uniformizable ( = completely regular) topological 
space, and £ will stand for the space of irrationals. A disjoint ({fx | x e P} is disjoint) 
upper semicontinuous compact (the sets fx are compact) multivalued mapping of P 
into Q will be called a DUCC mapping. By [1, Theorem 7] a space P is Borelian iff 
there exists a DUCC mapping of £ on P (Borelian spaces were introduced and 
studied in [1]). 

Theorem A. Each of the following conditions is necessary and sufficient for 
a Borelian subspace X of a space P to be a Baire set in P: 

(a) There exists a countable collection ^ of continuous functions on P which 
distinguishes the points of X from the points ofP — X (i.e., ifxeX, yeP — X 
then fx =t= fy for some f in ZF). 

(b) There exists a continuous mapping f of P into a separable metrizable 
space such that f[X~] n f [ P - X"] = 0. 

(c) If k is DUCC mapping of £ onto X then there exists an f as in (b) such 
that f' o k is disjoint (and so a DUCC mapping). 

(d) There exists a DUCC mapping of £ onto X and an f as in (b) such that 
f o k is disjoint. 

(e) Condition (b) withf\X] a Baire set, in the range space of f. 

Theorem B. Each of the following two conditions is necessary and sufficient 
for a subset X of P to be a BB-set in P: 
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(1) X is Borelian, and if k is a DUCC mapping ofY, onto X then there exists 
a continuous mapping F ofZ into C*(P) such that kx is the zero set of Fxfor each x 

"*Z-
(2) There exist k and F with properties stated in (l). 

Theorem C. Every Baire set in a BB-se* in P is a BB-set in P. The BB's of P 
form a a-ring. 

Theorem D. Every Borelian subspace of P is a Baire set provided that every 
closed set is a Gd. In particular, in a perfectly normal space every Borelian subspace 
is a Baire set. 

The main step is the following Separation Theorem. 

Theorem E. If X is an analytic subspace of a space P and if Y is an F0 in P 
disjoint to X, then there exists a Baire set Z in P with X cz Z, Z n Y = 0. 
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